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 An oscillating electric dipole emits radiation, and the flow of energy is represented by 

the field lines of the Poynting vector.  In the most general state of oscillation the dipole 

moment vector traces out an ellipse.  We have evaluated analytically and numerically the 

field lines of the Poynting vector for the emitted light, and it appears that each field line 

lies on a cone, which has its axis perpendicular to the plane of the ellipse.  The field lines 

exhibit a vortex structure near the location of the dipole, and they approach a straight line 

in the far field.  The spatial extent of the optical vortex is well below the wavelength of 

the emitted radiation.  It is shown that the asymptotic limit of a field line is displaced as 

compared to a ray which would come directly out of the source.  This near-field vortex 

pattern will also lead to a shift of the intensity distribution of the radiation in the far field.

 The emission of radiation by a linearly oscillating electric dipole is drastically altered 

when the dipole is close to a mirror.  The energy is not emitted along optical rays, as for a 

free dipole, but as a set of four optical vortices.  At a larger distance from the dipole 

singularities and isolated vortices appear.  It is shown that most of these interference 
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vortices are due to the vanishing of the magnetic field at their centers.  In the plane of the 

mirror there is a singular circle with a diameter which is proportional to the distance 

between the dipole and the mirror.  Inside this circle, all energy flows to a singularity on 

the mirror surface.   

 We have also demonstrated a peculiar property of energy transport of optical dipole 

radiation in a negative index of refraction material (NIM).  When the particle is 

embedded in a NIM and the dipole moment is rotating, the direction of rotation of the 

field lines of energy flow is reversed as compared to the rotation of the field lines for 

emission in a dielectric. 
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CHAPTER I 

INTRODUCTION

1.1   Background 

 The near field of a localized source or the diffracted probe light by a nanoscale object 

can have a very intricate structure in close vicinity of the source or scatterer, including 

singularities and optical vortices.  The first prediction of an optical vortex on a sub-

wavelength scale was made by Braunbek and Laukien [1].  They considered a half-

infinite thin conducting sheet (the Sommerfeld half-plane), illuminated by a 

monochromatic plane wave under normal incidence.  They found numerically that an 

optical vortex in the field lines of the energy flow should appear at the illuminated side of 

the half-plane, somewhere near the edge.  At the center of this vortex is a phase 

singularity.  A singular point of a radiation field is usually defined as a point where the 

amplitude of the electric field vanishes, leaving the phase of the optical field undefined 

[2].  At such a point, the Poynting vector also vanishes.  When a field line of the Poynting 

vector approaches a singular point, then the field line can either end at that point or bend 

around it.  Another possibility is that there are closed-loop field lines around the singular 

point, representing a circulation of energy around the singularity.

 Vortices around singular points have been predicted in the diffracted field of a plane 

wave by a sub-wavelength slit in a screen [3,4], in interference patterns between three 
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plane waves [5] and in the focal plane of a focusing lens [6-9].  By far the most studied 

optical vortices are the vortices in the field of a Laguerre-Gaussian laser beam [10-13].  

The dimension of an optical vortex is of the order of the wavelength of the light, or less.  

When a vortex appears in a diffraction pattern around an edge, like for the half-plane, the 

distance between the singular point of the vortex and the screen is of the order of an 

optical wavelength.  Optical vortices, loops and knots can be generated in the laboratory 

by means of interference of light beams [14], and the existence of vortices in the near 

field can be experimentally verified with interference techniques [15-18].  Such 

singularities in the radiation field are a result of diffraction and reflection by a device or 

due to interference.   

1.2   Overview

 The most elementary type of electromagnetic radiation is electric dipole radiation.  

On one hand, when a source of radiation is small compared to the wavelength of the 

emitted light, the source is in first approximation an electric dipole, and, on the other 

hand, the radiation emitted by atoms and molecules is usually electric dipole radiation. 

As shown in Fig1.1, suppose there is a particle in a laser beam.  If the laser beam hits the 

particle, it will induce a dipole moment. For instance, when an atom is placed in the laser 

beam, it will absorb a photon and jump to an excited electronic state.  In a subsequent 

spontaneous decay, a fluorescent photon will be emitted in the form of dipole radiation.  

In the decay to the lower state, the change in magnetic quantum number is �
m -1, 0 or
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laser beam 
dipole  

scattered light 

atom, molecule or nano-particle

Figure 1.1   Atom, molecule or nano-particle in a laser beam. 

1, according to the dipole selection rules.  The electric and magnetic fields of an electric 

dipole are well-known [19], and the emitted power per unit solid angle can be obtained 

easily, giving the familiar lobe structure for a linearly-oscillating dipole moment.  For a 

single dipole, located at the origin of coordinates, the light appears to be emanating from 

the location of the dipole, when viewed from the far field.  The wave fronts propagate as 

spherical outgoing waves centered around the dipole and the corresponding optical rays 

(the orthogonal trajectories of the wave fronts) are therefore straight lines which appear 

to come from the location of the source.  This situation is illustrated in Fig. 1.2.   

 In the geometrical optics limit of light propagation certain terms in Maxwell’s 

equations are neglected under the assumption that the wavelength of the light is small  
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Figure 1.2   The emission of light by a source of radiation.

When observed from a large distance, the light appears to travel along 
straight lines (rays), which appear to come from the location of the source 
(the black dot).  These lines, with their orientation indicated by the arrow 
heads, are the field lines of the Poynting vector of the electromagnetic 
radiation field.  The corresponding wave fronts are expanding spheres, and 
this is shown schematically by the dashed circle.  The eye in the figure 
depicts the position of an observer, far away from the source.

compared to other relevant distances.  It can then be shown [20] that the light rays in a 

homogeneous medium are straight lines, irrespective of the source of the radiation, and 

that the light rays coincide with the field lines of the Poynting vector.  In this limit, the 
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field lines of the Poynting vector are straight lines at any distance from the source, and in 

particular in the near field.  However, when the structure of dipole radiation is resolved 

on the scale of a wavelength, the field lines of the Poynting vector are in general curves 

[21], and they may exhibit a vortex structure near the location of the dipole.  In the far 

field, the field lines are asymptotically straight, but we shall show that when the direction 

of the emission of radiation is detected with an accuracy of a wavelength or less, the field 

lines appear to be displaced as compared to the optical rays.  With contemporary near-

field optical microscopy techniques, the precise details of a radiation pattern have 

become amenable to experimental observation [22-26], and such measurements with 

nanoscopic precision may have an impact on novel imaging devices in microbiology and 

medical applications.   

 When a small source of radiation is located near an interface, the emitted light that 

propagates towards the surface partially reflects and partially refracts at the boundary.  

We shall consider the case where the medium is a perfect mirror, so that all light reflects.  

The angle of reflection of an optical ray is equal to the angle of incidence, and by 

considering the path of two rays, as in Fig. 1.3, it appears that a virtual image is formed 

below the mirror, such that the distance between the object and the mirror is equal to the 

distance between the image and the mirror.  Part of the emitted light travels directly from 

the source to an observer, and the result is that both the source and the image can be seen.  

Ray diagrams as in Fig. 1.3 are justified in the geometrical optics limit of light 

propagation [20] in which variations in the optical field on the scale of a wavelength are  
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Figure 1.3     Ray diagram for the image formation of a point source near a mirror (left)  
                      and a sketch of a possible energy flow pattern (right).

In the geometrical limit of light propagation, the mirror image of an 
incoherent point source can be constructed by considering the reflection of 
the optical rays, as shown on the left.  For the exact solution of Maxwell’s 
equations the flow of energy is determined by the field lines of the Poynting 
vector.  In contrast to the optical rays, these field lines are smooth curves, as 
illustrated in the sketch on the right. 

neglected.  It is furthermore assumed that the source is incoherent, so that any 

interference between optical rays washes out.  In the geometrical optics limit the rays are 

the orthogonal trajectories of the wave fronts, and for propagation in vacuum it can then 

be shown that the rays are straight lines.  The direction of energy flow in any radiation 

field is determined by the direction of the electromagnetic Poynting vector, and in the 

geometrical optics limit the field lines of the Poynting vector coincide with the optical 

image

source

direct reflected 
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rays.  Therefore, in the geometrical optics limit electromagnetic energy flows along 

straight lines, which are the optical rays.

 When the source of radiation is an atom, a molecule or a nano-particle, driven by a 

laser beam, the radiation can no longer be considered incoherent, and there will be 

interference between the different paths of energy propagation.  When the source near a 

mirror is viewed from the far field (many wavelengths away), an interference pattern will 

be observed, and the source and its image can no longer be distinguished.  The ray 

diagram of Fig. 1.3 is still valid, although its interpretation is then derived from an 

angular spectrum representation of the source field and the reflected field.  In this 

approach the radiated electric and magnetic fields are represented by superpositions of 

traveling and evanescent plane waves [27-38].  In the far field, only the plane waves 

survive, and it can be shown by asymptotic expansion of the angular spectrum with the 

method of stationary phase that the interference pattern in the far field is consistent with 

the ray diagram of Fig. 1.3.  For a coherent source, however, the rays in Fig. 1.3 are not 

the paths of energy propagation anymore, but rather visualizations of the wave vectors of 

the traveling waves in an angular spectrum representation.   

 In near-field optics and nano-photonics variations in the optical field on the scale of a 

wavelength are of interest and objects may be located at a sub-wavelength distance from 

an interface.  Then the geometrical optics limit breaks down, whether the source is 

coherent or not.  When measurements are performed in the near-field, then an 

interpretation of the the ray diagram of Fig. 1.3 also loses its significance in terms of the 
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angular spectrum, since the near field is dominated by the evanescent waves.  In any case, 

when sub-wavelength phenomena are of interest, the exact solution of Maxwell’s 

equations has to be adopted.  The paths of energy flow are the field lines of the Poynting 

vector, and these field lines are usually curves rather than straight lines.  Field lines of 

any vector field can not cross, whereas the optical rays in Fig. 1.3 do cross.  So when 

considering the flow of energy out of a source near a mirror, we expect a smooth flow 

pattern as in the sketch in Fig. 1.3.  Near the interface, the Poynting vector is tangential to 

the boundary, as follows from the boundary conditions of Maxwell’s equations, and 

therefore the field lines reflect smoothly at the mirror.  This in contrast to the reflection in 

the ray picture in Fig. 1.3 where the rays make a sharp turn at the interface.   

 For the construction of the image with a ray diagram, as in Fig. 1.3, the details of the 

source are irrelevant, whereas for the flow line picture in Fig. 1.3 the details of the flow 

pattern will depend on the precise structure of the source.  We shall consider the emission 

of radiation by a harmonically oscillating linear dipole near a mirror.  It will turn out that 

the flow line picture is generally far more complicated than suggested in Fig. 1.3, and we 

shall also show that the process of emission of radiation is drastically altered due to the 

presence of the mirror. 

 Understanding the energy emission pattern of a small source and the energy flow 

distribution in simple systems may have an impact on near field imaging with nanoscale 

resolution, for instance of biomolecules.  Particularly interesting are our results 

concerning the influence of an interface.  Due to reflection of the emitted radiation by the 
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interface, interference patterns appear, as one could expect.  However, we shall also show 

that the interface changes the emission mechanism of the radiation, which is a 

counterintuitive result.

 The results presented in this thesis have been published in a series of ten publications, 

which are listed in Appendix E.  A full text pdf version of each paper can be found at the 

Theoretical Optics website, http://hfa1.physics.msstate.edu/ .
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CHAPTER II 

NANOSCALE STRUCTURE OF THE ENERGY FLOW LINES FOR DIPOLE 

RADIATION IN FREE SPACE  

 

 An oscillating electric dipole emits radiation, and the flow of energy in the 

electromagnetic field is represented by the field lines of the Poynting vector.  In the most 

general state of oscillation the dipole moment vector traces out an ellipse.  In this chapter, 

we have evaluated analytically and numerically the field lines of the Poynting vector for 

the emitted light, and it appears that each field line lies on a cone, which has its axis 

perpendicular to the plane of the ellipse.  The field lines exhibit a vortex structure near 

the location of the dipole, and they approach a straight line in the far field.  The spatial 

extent of the optical vortex is well below the wavelength of the emitted radiation, and 

hence is of nanoscale dimension for optical radiation.  It is shown that due to the spiraling 

of the field lines near the source, the asymptotic limit of a field line is displaced as 

compared to a ray which would come directly out of the source.  The magnitude of the 

displacement of the image in the far field is of the same order of magnitude as the spatial 

extent of the vortex structure near the source.
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2.1   The Poynting Vector for Electric Dipole Radiation 

 When the current density in a localized source of radiation oscillates harmonically 

with angular frequency � , it has an electric dipole moment given by  

     )Re()( tiet ��� dd   , (2.1) 

where the complex amplitude d is a complex-valued vector, which is determined by the 

current distribution of the source.  Throughout this thesis, a non-italic bold face letter 

indicates a vector.  It will be assumed that higher order multipole moments of the current 

density contribute negligibly to the radiation field, when compared to the electric dipole 

moment contribution.  The radiated electric field will also have a harmonic time 

dependence, and can therefore be written as 

])(Re[),( tiet ��� rErE   , (2.2) 

with )(rE  the complex amplitude, and the radiated magnetic field ),( trB  can be 

represented similarly.  The complex amplitudes of the electric and magnetic fields of an 

electric dipole at the origin of coordinates can be represented most compactly as 

     )(])([
4

1)( 2
o

o
rddrE gk �����

��
  , (2.3) 

     )(
4

)( o rdrB g
i

���
�

��   , (2.4) 

in terms of the wave number ck /o �� , and
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r

eg
riko

)( �r   , (2.5) 

is the free-space Green’s function for the scalar Helmholtz equation.  Here, || r�r  is the 

distance between the field point r  and the location of the source.  Working out the 

derivatives gives explicitly 

    iqe
q
i

q
i

q
k

)}1(]ˆ)ˆ(3[ˆ)ˆ({
4

)(
o

3
o ������� rrddrrddrE

��
  , (2.6) 

    iqe
q
i

cq
k

��
�

�
��
�

�
���� 1ˆ

4
)(

o

3
o rdrB

��
  , (2.7) 

where we have set 

         rkq o�   , (2.8) 

for the dimensionless distance between the dipole and the field point r.  Vector r̂  is the 

unit vector in the r  direction, e.g., r/ˆ rr � .

 The Poynting vector at position r and at time t for an electromagnetic field is in 

general given by 

),(),(1),(
o

ttt rBrErS ��
�

  . (2.9) 

For a time-harmonic field we can substitute the right-hand side of Eq. (2.2) for ),( trE ,

and a similar expression for ),( trB .  This yields 

    )*]()(Re[
2

1)(
o

rBrErS ��
�

  , (2.10) 
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which now only involves the complex amplitudes of the electric and magnetic fields, 

rather than the fields themselves.  Here, terms that oscillate at twice the optical frequency 

�  have been dropped since they average to zero on a time scale of an optical cycle.  

Equation (2.10) shows that for any time-harmonic field the (time-averaged) Poynting 

vector is independent of time t.  The significance of the Poynting vector is as follows.  

Consider a small fictitious surface area dA at point r in space, and let n̂  be the unit 

normal vector on dA.  Then Adn̂S �  equals the energy transported through dA per second, 

which is the power transported through dA.  We therefore see that the direction of )(rS  at 

the field point r indicates the direction of energy flow.  The Poynting vector )(rS

determines a vector field around the dipole, and the field lines of this vector field 

represent the flow pattern of the radiated energy.

 When we substitute the right-hand sides of Eqs. (2.6) and (2.7) for the complex 

amplitudes of the electric and magnetic fields, respectively, we obtain for an electric 

dipole at the origin of coordinates 

*]})ˆIm[(112ˆ*)]ˆ)(ˆ(*{[
32

)(
22

o
2

4
o ddrrdrdrddrS ��

�
�

�
�
�
�

�
�������

qqr

ck

��
  . (2.11) 

 To see the meaning of the various contributions, let us consider a surface area dA

which is part of a sphere with radius r around the origin.  Then we have rn ˆˆ �  for the 

unit normal on dA, and the magnitude of dA equals �d2r , with �d  the solid angle 

subtended by dA.  In spherical coordinates this is ��� ddsind �� .  The emitted power 

into the solid angle �d  is then 
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)(ˆ
d
d 2 rSr ��
�

rP   , (2.12) 

and with Eq. (2.11) this becomes 

*)]ˆ)(ˆ(*[
32d

d

o
2

4
o drdrdd �����

� ��

ckP   . (2.13) 

The term proportional to *])ˆIm[( ddr �  in Eq. (2.11) gives no contribution to the radial 

power flow, since the dot product of this term with r̂  vanishes.  We see from expression 

(2.13) that the power flow into the solid angle �d  is independent of the distance r

between the dipole and the surface element dA.  The total power oP , emitted by the 

dipole, can then be obtained as 

� �
��

d
ddo

PP   , (2.14) 

where the integral runs over the unit sphere.  The dependence on the spherical 

coordinates ),( ��  in �d/dP  only enters through r̂ , and the integral in Eq. (2.14) can be 

evaluated easily.  We find 

*
12 o

4
o

o dd ��
��

ck
P   . (2.15) 

 In order to make the notation more transparent, we set  

     1*,0, oo ���� ���d dd   , (2.16) 

for the complex amplitude of the dipole moment and we introduce the function 



www.manaraa.com

15

*)ˆ)(ˆ(1),( �r�r �������   . (2.17) 

This yields the expression 

       *]})ˆIm[(112ˆ),({
8

3
)(

22
o ��rrrS ��

�
�

�
�
�
�

�
���

qqr

P
���

�
  , (2.18) 

for the Poynting vector.  The total power becomes 

         2
o

o

4
o

o 12
d

ck
P

��
�   , (2.19) 

and the power per unit solid angle takes the form 

        ),(
8
3

d
d

o ���
�

PP
�

�
  . (2.20) 

The function ),( ��� , which appears as the first term in the expression for the Poynting 

vector, is therefore proportional to the power per unit solid angle for the observation 

direction ),( �� .  The second term on the right-hand side of Eq. (2.18), which is 

proportional to *])ˆIm[( ��r � , has no radial component.  If only the first term were present, 

the Poynting vector would be proportional to r̂ , and the field lines would run in the 

radial direction, as in Fig. 1.2.  The second term is responsible for a possible curving of 

the field lines, and we shall see below that this term leads to the appearance of an optical 

vortex near the location of the dipole.

 When the vector �  in Eq. (2.16) is real, as for instance in a 0�
m  transition in an 

atom, the dipole moment given by Eq. (2.1) becomes )cos()( o tdt ��d � .  This 
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corresponds to a linear dipole moment, oscillating back and forth along the direction of � ,

and the Poynting vector becomes 

�
�

2
2

o sinˆ
8

3
)( rrS

r

P
�   , (2.21) 

where �  is the angle between vector �  and the observation direction r̂ .  The Poynting 

vector is in the radial direction for all field points r, and therefore the field lines of )(rS

are straight lines which run radially outward from the location of the dipole, as in Fig. 1.2.  

The power per unit solid angle is proportional to �2sin , and this gives the common lobe 

pattern for dipole radiation.

 At a large distance from the dipole, the Poynting vector is approximately 

rrS ˆ),(
8

3
)( 2

o ���
� r

P
�   , (2.22) 

which is in the radial direction.  Therefore, in the far field the field lines approach a 

straight line, and they have the appearance of running from the location of the dipole 

directly to the far field.  A more careful consideration (below) will show that this only 

holds when spatial variations on the scale of a wavelength in the far field are neglected.   

2.2   Magnetic Dipole 

 Although electric dipole radiation is the most common atomic source of light, 

magnetic dipole radiation is also of interest.  For instance, when an atomic transition is 
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electric-dipole-forbidden, the atom may emit magnetic dipole radiation.  For a time-

harmonic source, the time dependent magnetic dipole moment can be written as  

)Re()( tiet ��� pp   , (2.23) 

in analogy to Eq. (2.1) for the electric dipole moment.  The complex amplitudes for the 

electric and magnetic fields now become 

)(
4

)( o rprE g
i

����
�

��   , (2.24) 

)(])([
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o rpprB gk �����
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�   , (2.25) 

and this yields explicitly 
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  , (2.26) 
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oo ������� rrpprrpprB
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  . (2.27) 

Then we set

       1*,0, oo ���� ���p pp   , (2.28) 

as in Eq. (2.16) for the electric dipole.  Computation of the corresponding Poynting 

vector then gives again expression (2.18), with the total power now given by 

     2
o

o

4
o

o 12
p

c
k

P
��

�   . (2.29) 
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Therefore, apart from the different expressions for oP , the Poynting vector for a 

magnetic dipole in free space is the same as the Poynting vector for an electric dipole 

with the same � , and consequently the field line patterns are the same for both types of 

dipoles.

2.3   Elliptical Dipole Moment 

 When an atom in an excited electronic state decays to a lower state in a 1��
m

transition, the vector �  in Eq. (16) is the spherical unit vector 

)(
2

1
1 yx ieee �����   . (2.30) 

The dipole moment )(td  then traces out a circle in the xy-plane, and the rotation is 

positive (counterclockwise when viewed from the positive z-axis) for 1e� �  and negative 

for 1�� e� .  In general, however, the complex amplitude d of the dipole moment can be 

any complex-valued vector.  It can then be shown [39,40] that the most general state of 

rotation of )(td  is an ellipse.  We can then take the plane of this ellipse as the xy-plane,

and parametrize vector �  as 

      )(
1

1
2 yx iee� �
�

�� �
�

  , (2.31) 

with �  real.  With Eq. (2.1) this yields  

)]sin()cos([
1

)(
2
o tt

d
t yx ���

�
eed �

�
��   , (2.32) 
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and this ellipse is shown in Fig. 2.1.  For 1|| �� , as in the figure, the major axis is along 

the y-axis and the minor axis is along the x-axis.  For 1|| ��  the major axis is along the 

x-axis and the minor axis is along the y-axis.  For 0��  ( 0�� ) the rotation is positive 

(negative) and for 1��� , vector �  becomes 1�e , and the ellipse reduces to a circle.  

Furthermore, for 0��  and  !�  we recover the case of a linear dipole, oscillating 

along the y-axis and x-axis, respectively. As shown in Fig. 2.1, as time progresses, vector 

)(td  traces out an ellipse, and we take the plane of the ellipse as the xy-plane.  The ellipse 

is parametrized with � , as in Eq. (2.32), and the figure shows the dependence on �  of 

the semi-major and semi-minor axes.  For 0�� , the oscillation becomes linear along the 

y-axis, and for 1��  the ellipse reduces to a circle.  For 1��  the major axis is along the 

x-axis, and for  !�  the oscillation becomes linear along the x-axis.  For �  positive, 

as in the figure, the rotation is counterclockwise and for �  negative the rotation becomes 

clockwise.

 With �  given by Eq. (2.31), the Poynting vector from Eq. (2.18) becomes 

      }sin
1

112ˆ),({
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)(

222
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���

qqr
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  , (2.33) 

and for the function ),( ���  from Eq. (2.17) we find 

)]2cos(
1
11[sin1),( 2

2
2

2
1 �

�
�����

�

�
���   . (2.34) 

The term proportional to r̂  in Eq. (2.33) is the same as the right-hand side of Eq. (2.22),  
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Figure 2.1   The most general state of oscillation of an electric dipole moment )(td .
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so this term corresponds to the far-field solution.  The term proportional to �e  is 

dominant in the near field, since it is proportional to 5�r , and it will give rise to a 

rotation of the field lines around the z-axis.  For 0��  and  !�  this term vanishes, 

and the field lines are in the radial direction at any distance from the dipole, as in Fig. 1.2.   

2.4   Field Lines of the Poynting Vector 

 Expression (2.33) for )(rS  defines a vector field in space, and a field line of )(rS  is a 

curve for which at any point along the curve the vector )(rS  is on its tangent line.  Let 

)(ur  be a parametrization of a field line, with u a dummy variable.  Since a field line is 

only determined by the direction of )(rS , and not its magnitude, the field lines are 

solutions of 

             )()(
d
d rSrr f
u
�   , (2.35) 

with )(rf  an arbitrary positive function of r.  In spherical coordinates ),,( ��q , with 

rkq o� , Eq. (2.35) becomes  

             )(ˆ)(
d
d

o rSrr �� fk
u
q   , (2.36) 

          )()(
d
d

o rSer �� �
� fk
u

q   , (2.37) 

)()(
d
dsin o rSer �� �
�� fk
u

q   , (2.38) 

which is a set of equations for q, �  and �  as functions of u.  To simplify the equations  
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we take
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3
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kP
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�r   , (2.39) 

and with Eq. (2.33) for )(rS  we then obtain 
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 The solution of Eq. (2.41) is o�� � , with o�  a constant.  Therefore, any field line lies 

on a cone o�� � .  Then in Eq. (2.40) we can replace ),( ���  by ),( o ��� , and when 

combined with Eq. (2.42) this yields 

    
1),(

1112
d
d

2o22 ��
�
�

�
�
�
�

�
��
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���
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qqq
  , (2.43) 

which is an ordinary first-order nonlinear differential equation for )(q� .  We shall solve 

this equation in the next section.   
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dipole  

scattered light 

atom, molecule or nano-particle

Figure 1.1   Atom, molecule or nano-particle in a laser beam. 

1, according to the dipole selection rules.  The electric and magnetic fields of an electric 

dipole are well-known [19], and the emitted power per unit solid angle can be obtained 

easily, giving the familiar lobe structure for a linearly-oscillating dipole moment.  For a 

single dipole, located at the origin of coordinates, the light appears to be emanating from 

the location of the dipole, when viewed from the far field.  The wave fronts propagate as 

spherical outgoing waves centered around the dipole and the corresponding optical rays 

(the orthogonal trajectories of the wave fronts) are therefore straight lines which appear 

to come from the location of the source.  This situation is illustrated in Fig. 1.2.   

 In the geometrical optics limit of light propagation certain terms in Maxwell’s 

equations are neglected under the assumption that the wavelength of the light is small  
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the range  

0,o ��� � ���   , (2.47) 

0,o � �� ���   , (2.48) 

as follows from the arguments above.   

 Equation (2.46) can be solved explicitly, provided we consider �  as the independent 

variable rather than q.  When we introduce the function 
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   (2.49) 

then Eq. (2.46) becomes 
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which is a cubic equation in 1/q.  The solution for )(�q  is  
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The dimensionless Cartesian coordinates of a point on a field line are therefore 

parametrized by  

       ��� cossin)( oqx �   , (2.52) 

       ��� sinsin)( oqy �   , (2.53) 

       ocos)( ��qz �   , (2.54) 
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with xkx o� , yky o�  and zkz o� , and the parameter �  is chosen as in Eq. (2.47) or 

(2.48), depending on the sign of � .

 For the numerical evaluation of points on a field line we use Mathematica, and the 

graphs are made in SigmaPlot.  Figure 2.2 shows a field line for a circular dipole, rotating  

in the positive direction ( 1�� ), and the observation angles are 4/o �� �  and 2/o �� � .

The field line lies on a cone, and it has a vortex structure near the site of the dipole.  The 

spatial extent of the vortex is a fraction of a wavelength, as can be seen from the figure.  

Figure 2.3 shows several field lines for the same values of o�  and �  as in Fig. 2.2, but 

here each field line has a different value of o� .  The emerging field line pattern consists  

of cones around the z-axis, and on each cone we have a line swirling around.  A similar 

picture holds for the region 0�z , but it would not be clear if these lines were drawn in 

the same figure.   

 Each field line lies on a cone with its axis as the z-axis, and the field lines turn around

the z-axis with a positive orientation.  Asymptotically, the field lines run into the 

direction of the positive y-axis for the example in Fig. 2.3, since we have 2/o �� � .  For 

the dimensionless coordinates we have xkx o� , etc., so a dimensionless distance of �2

corresponds to one optical wavelength.  We then see from the figure that the spatial 

extent of this optical vortex is a fraction of a wavelength.  For optical radiation, with a 

wavelength of several hundred nanometers, the vortex manifests itself on a scale of less 

than 100 nm.  With contemporary high-precision nanoscale experimental techniques, 

such a vortex should be accessible to detection.   
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Figure 2.2   A typical field line of the Poynting vector for the radiation emitted by an 
                     electric dipole with 1�� , located at the origin of coordinates.   

The field line lies on a cone (of 45° with the z-axis for this example).  Near 
the source, the field line rotates numerous times around the z-axis, and this 
gives the vortex structure in the near-field emission pattern.  We use 
dimensionless variables xkx o� , etc., so that a distance of �2  corresponds 
to one optical wavelength.  We then see from the figure that the spatial 
extent of the vortex is a fraction of a wavelength.

 Figure 2.4 shows several field lines for 1�� .  For the field lines in the region 0�z

we have chosen 4/o �� � , and each field line has a different value of o� .  This figure 

illustrates how various field lines on a cone run off in different directions for different 

values of o� .  For the field lines below the xy-plane, we have used the same values of o�

as for the region 0�z , but o�  is equal to 4/3� .  The orientation of the field lines with  
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Figure 2.3   Three field lines of the Poynting vector for 1��  and 2/o �� � .

 Shown are field lines for three different values of o� .  Shown in the figure 
are 8/o �� � , 8/3�  and 2/� .  Each field line lies on the corresponding 
cone, and leaves into the positive y-direction.   

respect to the z-axis is the same in 0�z  and in 0�z .  The dependence of the vortex 

structure on the value of �  is illustrated in Figs. 2.5 and 2.6.  Figure 2.2 shows the 

vortex for 1�� , with 4/o �� �  and 2/o �� �  as the observation angles.  Figures 2.5 

and 2.6 show field lines for 1.0��  and 001.0�� , respectively, with the values of o�

and o�  the same as in Fig. 2.2.  When the value of �  decreases, as in Figs. 2.5 and 2.6, 

we find that the structure of the vortex remains similar, but its spatial extent diminishes.   
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Figure 2.4   Field lines of the Poynting for 1��  and 4/o �� �  and 4/3� .

The figure shows field lines for a variety of values of o� with �  fixed. The 
orientation of the field lines in both 0�z  and 0�z  is the same as the 
direction of rotation of the dipole moment (positive).   
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Figure 2.5   Field line for 1.0�� .

The observation direction is )2/,4/(),( oo ���� � .  For this figure, the value 
of �  is equal to 0.1, and the observation angles are the same as for the field 
line in Fig. 2.2.  Comparison of Figs. 2.2 and 2.5 shows that when �
decreases, the spatial extent of the vortex decreases.   

For 0!�  the field lines of the Poynting vector should become straight lines, running 

from the site of the dipole to the far field, since in the limit 0!�  the oscillation of the 

dipole becomes linear along the y-axis.  Figures 2.5 and 2.6 show that this transition 

occurs through a decreasing size of the optical vortex.   
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Figure 2.6   Field line for �  = 0.001.

For 0!�  the dipole approaches a linear dipole, oscillating along the y-axis, 
for which the field lines are straight, and run radially outward.  It appears that 
this limit is reached in such a way that the spatial extent of the vortex reduces, 
until it reaches a point for 0!� , as can be seen from this figure. 

2.5   Displacement in the Far Field 

 Every field line of the Poynting vector approaches a straight line in the far field, 

which is reminiscent of the optical rays picture for the emission of radiation.  Due to the 

rotation of the field lines near the location of the source, however, these straight lines do 

not appear to come exactly from the site of the dipole, as depicted in Fig. 2.7. 
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2.5.1   Asymptotic Limit of the Field Lines 

 In order to obtain the asymptotic limit of the field lines, we consider Eq. (2.43) for 

qd/d� .  For q large, we can expand )(q�  in an asymptotic series as 

               ...)( 2
21

o ����
qq

q ����   . (2.55) 

For the function ),( o ���  on the right-hand side of Eq. (2.43) we obtain ),( o ��� =

),( oo ��� + �(1/q), and the expansion of Eq. (2.43) becomes 
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where we have introduced the abbreviation 
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Integration of Eq. (2.56) then yields the first two terms of the asymptotic series  

               ...);,(1)( ooo ��� ����� Y
q

q   . (2.58) 

 The dimensionless Cartesian coordinates for a point on a field line are given by Eqs. 

(2.52)-(2.54), in which q is considered a function of � .  We now view �  to be a function 

of q, and we expand �cos  and �sin  in Eqs. (2.52) and (2.53) for q large by means of Eq. 

(2.58).  This gives 
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Figure 2.7   A field line approaches asymptotically a line �  at a large distance.   

When the radiation is detected by an observer in the far field, the field line 
appears to come from a point in the xy-plane with position vector dq .
Therefore, the source of the radiation appears to be displaced over vector dq .
The figure illustrates this displacement for a circular dipole with 1�� , and 
observation direction )95.0,4/(),( oo ���� � .
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...sin);,(1cos)(cos oooo ��� ������ Y
q

q   , (2.59) 

...cos);,(1sin)(sin oooo ��� ������ Y
q

q   . (2.60) 

In Eqs. (2.52) and (2.53) the factors �cos  and �sin  are multiplied by q, and therefore 

the second terms on the right-hand sides of Eqs. (2.59) and (2.60) become a constant, 

independent of q.  The higher-order terms vanish for  !q , and therefore the 

asymptotic limit for the dimensionless Cartesian coordinates becomes 

             ]sin);,(cos[sin ooooo �����"� Yx ��   , (2.61) 

             ]cos);,(sin[sin ooooo �����"� Yy ��   , (2.62) 

             ocos�"�z   , (2.63) 

where we have replaced q by " , since this free parameter does not have the significance 

of the dimensionless distance to the origin anymore in the asymptotic limit.  When we let 

 �� � " , Eqs. (2.61)-(2.63) represent a straight line � , which is the asymptote of the 

corresponding field line of the Poynting vector.  When we set 

          )cossin(sin);,( oooood ������ yxY eeq ��   , (2.64) 

for given ),( oo �� , then the equation for the line �  can be written as 

      doˆ: qrq �� "�   , (2.65) 

with rq ok�  the dimensionless position vector for a point on the line � , and or̂  the 

radial unit vector into the direction of observation ),( oo �� .  The intersection between the 
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line �  and the xy-plane follows by setting 0�" , and therefore we see that vector dq  is 

the virtual displacement of the source in the xy-plane, when viewed from the far field.  

This result is illustrated in Fig. 2.7.  It also follows from Eq. (2.64) that 0ˆod ��rq , and 

therefore the displacement dq  is perpendicular to the direction of observation or̂ .

 An interesting aspect of the virtual displacement dq  of the source in the xy-plane is 

that it depends on the observation angles o�  and o� .  Figure 2.8 shows two field lines for 

which the displacement for both is along the positive y-axis, and we see from the figure 

that the magnitude of the displacement is different for both observation directions.  For 

observation along the xy-plane, the line �  is in the xy-plane, and its intersection point 

with the xy-plane should be considered as the limit 2/o �� !  in the general expression 

(2.64) for dq .  Since the line �  runs into the direction of or̂ , and since 0ˆod ��rq , the 

displacement vector in the xy-plane is perpendicular to the asymptote �  of the field line.  

An example of this situation is shown in Fig. 2.9.  Figure 2.10 shows several field lines in 

the xy-plane, and their corresponding displacement vectors.   

2.5.2   Displacement Vector 

 When a field line is observed in the far field, it appears to come from the point with 

position vector dq  in the xy-plane, as shown in Fig. 2.7.  From a different point of view, 

the observation plane of an observer in the far field, located at angular position ),( oo �� ,

is a plane perpendicular to or̂ , at a large distance from the source.  When a field line 

would run straight from the source to the observer, it would intersect the observation  
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Figure 2.8   Dependence of the displacement on o� .

Far away from the source the field lines approach straight lines, indicated by 
� .  The figure shows field lines for 1�� , �� �o , and curves a and b
correspond to observation angles 6/o �� �  and 3/o �� � , respectively.  
When viewed from the far field, a curved field line is indistinguishable from 
the asymptotic line � , and this gives rise to an apparent displacement of the 
source.  The image point in the xy-plane is the intersection between �  and the 
xy-plane, and the location of this point is represented by the displacement 
vector dq .  Clearly, the displacement depends on the direction of observation.   

plane at the local origin of coordinates �', as shown in Fig. 2.11, but due to the rotation of 

the field lines near the source the field line intersects this plane at a different point.  At a 

large distance, this point is the same as the intersection of the plane with the line � .  The 

displacement vector dq  from Eq. (2.64) can be written as 

oood sin);,(
o

����� Yeq ��   , (2.66) 

with
o�e  the local unit vector �e  in a spherical coordinate system, and evaluated at the  



www.manaraa.com

36

Figure 2.9   A field line in the xy-plane for an elliptical dipole with 5.0�� .

The parameter o�  is taken as 2/� , so the field line runs parallel to the 
positive y-axis in the far field.  The displacement vector of the image of the 
dipole in the xy-plane is along the positive x-axis and has a magnitude of 

4d �q .



www.manaraa.com

37

Figure 2.10   Three field lines in the xy-plane ( 2/o �� � ) for a circular dipole ( 1�� ).

The field lines approach asymptotically the dashed lines, corresponding to 
various values of the observation angle o� .  The arrows indicate the 
displacement vectors of the image of the dipole in the xy-plane, and they are 
perpendicular to the dashed lines.

observation angle o� .  From Eqs. (2.65) and (2.66) it then follows that the displacement 

of this intersection point with respect to the local origin of coordinates is also given by 

dq , since vector dq  is a vector in the observation plane.  Therefore, the apparent 
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displacement of the field line in the far field is the same as the virtual displacement of the 

source in the xy-plane.   

 The displacement in the far field depends on the observation direction ),( oo �� , and 

on the parameter �  of the ellipse.  For 0�� , the displacement is in the 
o�e�  direction, 

as in Fig. 2.12, and for 0��  the displacement is in the 
o�e  direction.  The magnitude of 

the displacement is 

),(
sin

1
||2

oo

o
2d ���

�
�
�
�

�q   , (2.67) 

with ),( oo ���  given by Eq. (2.34).  For 0o ��  or �� �o  we have 1),( oo ����  and 

0d �q .  When a field line is observed along the z-axis, the displacement is zero.  We see 

from Fig. 2.3 that in the z-direction a field line swirls around the z-axis and stays close to 

the z-axis, which results in a vanishing displacement in the far field.  For a given �  and 

o�  we find from Eqs. (2.67) and (2.34) that dq  is maximum for 2/o �� � , so for an 

observation direction in the xy-plane.  When considering the dependence on o� , we find 

from Eq. (2.34) that dq  is maximum for 1)2cos( o ��  when 1|| �� , and for 

1)2cos( o ���  when 1|| �� .  This corresponds to 0o ��  or �  and 2/o �� �� ,

respectively.  From Fig. 2.1 we then see that both cases correspond to an observation 

direction along the major axis of the ellipse.  When viewed in this direction, the 

magnitude of the displacement is given by 

#$

#
%
&

�

�
�

1||,
||

2
1||,||2

d �
�

��
q   , (2.68) 
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Figure 2.11  The observation plane for an observer located in the direction or̂  with 
                       respect to the source.   

The plane is perpendicular to or̂  and far away from the source.  If a field 
line would be a straight line (ray) from the source to the far field, it would 
intersect the observation plane at the origin .  Due to the rotation of the 
field line near the source, the intersection point, which is the location of 
the image, is displaced over vector dq  in the observation plane.  For a 
positive �  the rotation near the source is in the positive direction with 
respect to the z-axis, and this leads to a displacement in the 

o�e�  direction, 
as shown.

which is the maximum value of dq , given � .  For a circular dipole we have 1|| �� , and 

the maximum dimensionless displacement is 2d �q , corresponding to a distance 

�" /d �r , with "  the wavelength of the radiation.  When the eccentricity of the ellipse 

increases, the value of dq  along the major axis increases.  Figure 2.12 shows field lines 
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for observation along the major axis for 1��  and 5.0�� .  For 1|| '� , the 

displacement can be very large, and we see from the figure that the approach to the 

asymptote �  becomes very slow.   

 For  !�  ( 0!� ), the oscillation of the dipole becomes linear along the x-axis (y-

axis), and from Eq. (2.68) it follows that in this limit the maximum displacement grows 

without bounds.  This is due to the fact that along the major axis we have 0),( oo !���

for both  !�  and 0!� , resulting in a division by a small number in Eq. (2.67).  On 

the other hand, it follows from Eq. (2.20) that ),( ���  is proportional to the radiated 

power per unit solid angle in the direction ),( �� .  We conclude that in the limit of a 

linear dipole the displacement is maximum for the direction into which the emitted power 

vanishes.

 In its most general state of oscillation, an electric dipole moment of a source of 

radiation traces out an ellipse in a plane, taken to be the xy-plane.  The field lines of the 

Poynting vector of the emitted electromagnetic field represent the direction of energy 

flow, and we have obtained an analytical solution for these field lines.  It was found that 

for a given observation direction ),( oo ��  in the far field, the corresponding field line lies 

entirely on the cone specified by the polar angle o� .  Near the location of the dipole the 

field lines have a vortex structure, in which each field line swirls around the z-axis 

numerous times.  In the far field, each field line approaches asymptotically a straight line, 

resembling an optical ray.  The parameter equation of this line is given by Eq. (2.65)
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Figure 2.12   Field lines for 2/o �� �  and 2/o �� � .

Curves a and b correspond to 1��  and 5.0�� , respectively, and the 
dashed lines are the asymptotes.  The displacement vectors are along the x-
axis, and their magnitudes are 2d �q  and 4d �q , respectively.   
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for a given observation direction ),( oo �� .  This line does not go through the origin of 

coordinates, where the dipole is located, and therefore it appears that the position of the 

dipole in the xy-plane is shifted.  This apparent displacement of the source is represented 

by the position vector dq , given by Eq. (2.64).  The magnitude of vector dq  is of the 

same order as the spatial extent of the vortex near the source, which is of sub-wavelength 

dimension.  However, when the radiation is observed along the major axis of the ellipse, 

the magnitude of the displacement increases with increasing eccentricity of the ellipse.  

When a field line is viewed from a location in the far field, the image point is displaced 

by the same vector ,dq  with respect to the origin of coordinates in the observation plane.  

In this fashion, the nanoscale structure of the radiation pattern near the source is reflected 

in a measurable, although small, effect in the far field.   
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CHAPTER III 

SUBWAVELENGTH RESOLUTION IN THE FAR FIELD INTENSITY 

PROFILE OF OPTICAL DIPOLE RADIATION 

 Figure 2.7 shows a field line of the Poynting vector for the radiation emitted by a 

dipole, with a dipole moment which rotates counterclockwise in the xy-plane.  The scale 

in the figure is such that one wavelength corresponds to �2 .  Near the dipole, the field 

line swirls around the z-axis, and in the far field it approaches the straight line � .

Therefore, it appears as if the radiation comes from a point in the xy-plane (the plane of 

dipole rotation) which does not coincide with the location of the source.  The spatial 

extent of the vortex in Fig. 2.7 is less than or about a wavelength, depending on the 

direction of observation and the state of oscillation of the dipole.  The vortex structure of 

the field line of )(rS  near the source has an effect in the far field, and it can be 

anticipated that the displacement shown for a single field line in Fig. 2.7 should lead to an 

observable shift of the intensity distribution of the radiation at a large distance.

3.1   Intensity in the Image Plane 

 In Eq. (2.18) , vector �  represents the state of oscillation of the dipole.  When �  is 

real, we have )cos()( o tdt ��d � , and therefore the dipole moment oscillates back and 
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forth along vector �  (linear dipole).  For a linear dipole, the Poynting vector is given by 

Eq. (2.21), which indicates that at any field point r the Poynting vector is in the r̂

direction, and consequently the field lines of the vector field )(rS  are straight lines in the 

radial direction.  For an observation direction along the dipole axis, e.g., �r ��ˆ , we have 

0)( �rS , which expresses the fact that no energy is emitted along the dipole axis.  This 

makes the dipole axis a singular line of the field line pattern.

 When we have 2/)( yx iee� ��� , the dipole moment vector )(td  has a constant 

magnitude and rotates with angular frequency �  in the xy-plane, and in the 

counterclockwise direction when viewed down the positive z-axis.  Such electric dipole 

radiation is emitted by an atom in a 1��
m  electronic transition.  The rotation of the 

dipole moment gives a swirling of the field lines of )(rS  around the z-axis in the 

neighborhood of the dipole, as illustrated in Fig. 2.7.  In Eq. (2.18), this rotation comes 

from the term with *])ˆIm[( ��r � .  Since the term is proportional to 1/q, it vanishes in the 

far field, and only the contribution proportional to r̂  in )(rS  survives.  Therefore, it may 

seem that since in the far field we have rrS ˆ)( ( , the field lines of )(rS  should run in the 

radial direction.  However, near the dipole a field line spirals around the z-axis, so when 

such a field line approaches a straight line in the far field, it is offset as compared to a 

field line which would emanate from the site of the dipole.  This gives a displacement of 

the field lines in the far field, and hence a possible shift in the intensity distribution in the 

far field. 
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3.1.1   Angular Distribution of the Emitted Power 

 The power flowing through a surface element dA, located at point r, into the direction 

of the unit normal n̂  on dA, is equal to AP dˆ)(d nrS �� .  We now consider dA as part of a 

sphere with radius or , and with the origin of coordinates as its center.  Then the unit 

normal n̂  is equal to r̂  at any point, and we have �� dd 2
orA , with �d  the solid angle 

corresponding to the surface element dA.  The emitted power per unit solid angle is given 

by Eq. (2.13): 

*)]ˆ)(ˆ(1[
8
3 o �r�r ����

� �
P

d
dP   . (3.1) 

Vector r̂  has the significance of the observation direction, and in terms of angles �  and 

�  of a spherical coordinate system this vector is 

      ���� cossin)sincos(ˆ zyx eeer ���   . (3.2) 

Therefore, �d/dP  in Eq. (3.1) gives the radiation pattern as a function of �  and � ,

given a particular value of vector � .  When integrated over a �4  solid angle, the total 

emitted power is oP .

 The right-hand side of Eq. (3.1) is independent of the radius or  of the sphere, and this 

may suggest that power simply flows radially outward, as for the case of a linear dipole, 

and as in the geometrical optics limit of light propagation.  We see from Fig. 2.7 that the 

field lines of the Poynting vector wind around the z-axis near the dipole, and the power 

flows out of the dipole along such field lines.  The outward power flow �d/dP  for a 
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given observation direction ),( ��  shows no sign of this rotation of the field lines in the 

near field for any or .  The term with *])ˆIm[( ��r �  in Eq. (2.18) is responsible for the 

rotation of the field lines.  With Eq. (2.12) we see that the contribution of this term 

becomes proportional to *)]ˆ)(ˆIm[( �r�r �� , and this is zero.

3.1.2   Intensity Distribution of the Radiation on a Plane 

 The angular distribution of the emitted power does not reveal the possible circulation 

of the field lines in the near field, no matter the radius or  of the sphere.  Figure 3.1 shows 

several field lines of the Poynting vector for a dipole rotating in the xy-plane, and we 

clearly notice an asymmetry in the field line distribution, for instance along the line 

4�y  (in dimensionless units, as in Fig. 2.7), which is due to the spiraling behavior of 

the field lines.  In order to possibly observe the rotation of the field lines, we consider the 

intensity distribution of the radiation over an image plane, rather than over a sphere.  We 

take the image plane as a tangent plane of a sphere with radius or , and the intersection 

point will be represented by vector or .  Therefore, the position of the plane is determined 

by angles ),( oo �� , and by its perpendicular distance or  to the origin.  The unit vectors 

o�
e  and 

o�
e  lie in the image plane, as shown in Fig. 3.2, and they define a rectangular 

coordinate system ),( �"  in which the coordinate axes are along the unit vectors.  A point 

r in the image plane can then be represented as 

ooo �� �" eerr ���   . (3.3) 
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 The unit normal vector on the image plane is or̂  for every point in the plane.  The 

intensity I (power per unit area) at point r in the plane depends on the location of the 

plane, specified by or , and on the coordinates ),( �"  of the point with respect to the 

origin of the plane at or .  The intensity distribution over the plane is therefore 

oo ˆ)(),;( rrSr ���"I   , (3.4) 

with )(rS  given by Eq. (2.18).  We introduce dimensionless coordinates "" ok� ,

�� ok�  in the image plane.  Since ok  is the wave number, a dimensionless distance of 

�2  represents one wavelength.  Similarly, ooo rkq �  is the dimensionless distance 

between the dipole and the image plane, and for point r in the plane we have

                222
o �" ��� qq   , (3.5) 

as the dimensionless distance between this point and the position of the dipole.  From Eq. 

(3.3) we obtain 

                )ˆ(1ˆ
oooo �� �" eerr ��� q

q
  , (3.6) 

and therefore we have qq /ˆˆ oo ��rr .  The intensity distribution then becomes 
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with
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Figure 3.1  Several field lines in the xy-plane of the Poynting vector for the case of a 
counterclockwise rotating circular dipole in the xy-plane.

  A bundle of field lines, like in the figure, determines the intensity distribution 
on an image plane (the line 4�y  in the figure).  The bold field line is 
approximately perpendicular to the image plane, and runs asymptotically into 
the observation direction ),( oo �� , which is )2/,2/( ��  in this illustration.
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Figure 3.2   The image plane. 

The image plane is spanned by the unit vectors 
o�

e  and 
o�

e , and "  and �
are the corresponding Cartesian coordinates in the plane.  Field lines of the 
Poynting vector that cross this plane determine the intensity profile, formed 
on the plane.  The bold field line runs asymptotically in the or̂  direction, and 
crosses the plane at the location given by the displacement vector dq  with 
respect to the origin of the plane.  This is the same dq  as in Fig. 3.1.  Angle 
  is the angle between the observation direction ),( oo �� , represented by or̂ ,
and the angular location of the field point r in the observation plane, as seen 
from the site of the source.   
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2
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o
o

8
3

r
PI
�

�   . (3.8) 

In Eq. (3.7), r̂  is given by Eq. (3.6) and or̂  follows from Eq. (3.2) with ),( ��  replaced 

by ).,( oo ��

 The contribution *)ˆ)(ˆ(1 �r�r ���  in Eq. (3.7) is essentially �d/dP , as can be seen 

from Eq. (3.1), and this part corresponds to the energy flow in the radial direction.  The 

term in braces containing *)]ˆ)(ˆIm[( o �r�r ��  arises due to the rotation of the field lines.  

The overall factor 3
o )/( qq  has two contributions:  A factor 2

o )/( qq  comes from )(rS ,

Eq. (2.18), being proportional to 2/1 r , and a factor qq /o  results from qq /ˆˆ oo ��rr , e.g., 

from projecting the radial outflow onto a plane rather than a sphere.  In other words, the 

factor qq /o  accounts for the fact that the field lines are not perpendicular to the 

observation plane, as can be seen in Fig. 3.1.

 An intensity distribution 3
oo )/( qqI  in the image plane would be a single peak at the 

origin, and rotational symmetric around the normal vector or̂ .  If we set cos/o �qq ,

then   (see Fig. 3.2) is the angle between vector r  and vector or , as seen from the 

location of the dipole.  The angular half-width at half-maximum of the image on the 

plane, as viewed from the site of the dipole, then follows from 2/1)/( 3
o �qq , and this is 

�  37°.  This peak will be altered due to the angular dependence of the emitted power in 

the radial direction and due to possible rotations of the field lines.

 As an example, let us consider a linear dipole along the y-axis, so ye� � .  Since �  is 

real, the field lines of the Poynting vector are in the radial direction, without any curving.  



www.manaraa.com

51

We take the image plane perpendicular to the y-axis, and therefore �  coincides with the 

observation direction or̂ .  Equation (3.7) can then be simplified to 

�" 23
oo sincos),;( II �r   , (3.9) 

where   is the angular location of a point on the image plane, as illustrated in Fig. 3.2.  

The intensity in the observation direction ( 0� ) is zero, and therefore the intensity has a 

minimum at the origin of the image plane.  The intensity is rotationally symmetric around 

or̂ , and consequently the maximum of the distribution has the shape of a ring.  Figure 3.3 

shows the intensity distribution for this case.  The angular width of the ring is given by 

5/3cos � , which gives 39� °, and the radius of the ring in the image plane is 

3/2oq .

3.2   Extremum in the Far Field Intensity Profile of a Circular Dipole 

 Features of the intensity distribution like the ring in Fig. 3.3 are of macroscopic 

nature in the sense that they scale with the distance oq  between the dipole and the image 

plane.  The structure of the intensity profile is a result of the angular distribution of the 

emitted power, �d/dP .  On the other hand, the swirling of the field lines, as in Fig. 3.1, 

can only affect the intensity on a nanoscale, since the spatial dimension of the vortex is of 

the order of a wavelength of the radiation.  We shall next consider the effect of the 

rotation of the field lines on the intensity distribution in detail.   

 For an arbitrary complex-valued vector � , the dipole moment )(td  in Eq. (2.1) traces 

out an ellipse in a plane as stated in chapter 2.  We take this plane as the xy-plane and
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Figure 3.3  The intensity distribution in an image plane perpendicular to the y-axis.

In this figure, the dipole moment oscillates linearly along the y-axis.  The 
dimensionless distance between the plane and the dipole is 2o �q , and the 
dimensionless radius of the ring is 1.63.   
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parametrize vector �  as Eq. (2.31), represented by parameter � .  For 0��  ( 0�� ) the 

dipole moment rotates in the counterclockwise (clockwise) direction, when viewed down 

the z-axis, and for 1���  the ellipse reduces to a circle.  For 0��  the oscillation 

becomes linear along the y-axis.  The unit vector r̂  into the direction of a point on the 

image plane involves the unit vectors that span the plane, according to Eq. (3.6).  

Explicitly we have 

             oooo sincos)sincos(
o

����� zyx eeee ���   , (3.10) 

             oo cossin
o

��� yx eee ���   , (3.11) 

and the intensity becomes 
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The last term in square brackets comes from the rotation of the field lines.  We notice that 

this term is proportional the coordinate �  in the image plane, and this indicates that the 

peak in the intensity distribution will be shifted along the � -axis.  We also see that for 

0�� , as in Fig. 3.1, the shift is in the negative �  direction, and for 0��  the shift is in 

the positive direction.  For a linear dipole ( 0�� ), the shift vanishes, and for an 

observation direction or̂  perpendicular to the plane of rotation of the dipole ( 0o ��  or 

� ), the shift is zero for any � .  The displacement term has an overall factor of )/(1 oqq ,

which is �( 2
o/1 q ) in the far field (  !oq ), and it may seem that at a large distance from 

the source, the shift of the peak should disappear.  We shall see in the next section that

this is not the case.   
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 The first part in square brackets in Eq. (3.12) for ),;( o �"rI  comes from �d/dP , and 

for an elliptic dipole we find explicitly: 

2
oo

2
22 )sincos([

1
11*)ˆ)(ˆ( ���2�

�
�

�
���

q
�r�r

                                          ])cossin( 2
oo ���2 �� . (3.13) 

Here we have introduced the abbreviation 

                  ooo cossin �"�2 �� q   . (3.14) 

 When the dipole moment rotates in a circle, we have 1��� , and the expression for 

the intensity distribution on a plane simplifies considerably.  From Eqs. (3.12) and (3.13) 

we obtain 
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The dependence on the observation direction o�  has disappeared, as could be expected 

for a circular dipole.  The last term in square brackets comes from the curving of the field 

lines near the dipole, as in Fig. 3.1, and this term is proportional to � .  The displacement 

dq  of the field lines in the far field is in the �  direction, and we expect a corresponding 

shift of the intensity distribution in the image plane.  When considering the �

dependence of ),;( o �"rI  for fixed " , the dependence on �  enters through the 

parameter q, Eq. (3.5), and explicitly as 2�  and �  in Eq. (3.15).  Without the rotation of 
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the field lines, �  only enters as 2�  and since this is symmetric in �  the profile would 

be symmetric in the �  direction around 0��  in the image plane.  In particular, the 

point 0��  would be either a local maximum or minimum, and hence any shift of this 

local extremum would be a reflection of the circulation of the field lines in the optical 

near field.

 In order to find the extrema of the intensity distribution, we first consider the 

dependence of ),;( o �"rI  on � , for a given " .  Setting 0/ �33 �I  yields 

                  )3(
sin
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and here we have also assumed detection in the far field, for which 1o ��q .  For 

detection along the z-axis ( �� or0o � ) we have 0sin o �� , and a solution is 0�� .  In 

order to find the general solution, we recall that an extremum in the far field should scale 

with oq , so that angle   in Fig. 3.2 remains constant.  When we divide Eq. (3.16) by oq ,

then the left-hand side becomes constant for oq  large, and the right-hand side vanishes as 

�( o/1 q ).  It can be shown by inspection that the factor in square brackets on the left-

hand side is positive, and therefore we find from Eq. (3.16) that 0/ o �q�  for any given 

" .  Since there is only one solution, the extremum is a maximum in the �  direction.

Similarly, 0/ �33 "I  yields 
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o
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qqq
������   , (3.17) 
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for 1o ��q .  For detection along the z-axis ( �� or0o � ) we have ocos�"2 � , and we 

see that 0�"  is a solution of Eq. (3.17).  Also for detection in the xy-plane, for which 

2/o �� � , we find that 0�"  is a solution.  When we divide Eq. (3.17) by oq , then the 

right-hand side goes to zero, and the remaining equation can be solved for o/ q"  for any 

given o/ q�  and o� .  The equation has one solution, and therefore the extremum in the 

"  direction is a maximum.   

 It follows from the previous paragraph that the intensity distribution has a single peak 

in the �" -plane.  When we indicate the coordinates of the location of the peak by 

),( pp �" , then we have 0/ op �q� .  With 0/ op �q� , Eq. (3.17) becomes an equation 

for op / q" , after division by oq .  When we set op / q"� � , Eq. (3.17) yields 

)]cos3(cos)[sin1()cos(sin o
2

oo
22

oo2
5 ��������� �����   , (3.18) 

which is a cubic equation for � , given the observation angle o� .  The solution of this 

equation is shown in Fig. 3.4.  We see that �  is relatively small for all o� , so that a 

reasonable approximation is obtained by setting 03 �� , 02 �� .  This yields 

                                   
87sin

)2sin(
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�
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�
�   , (3.19) 

which is shown as the dashed curve in the figure.  The shift of the maximum in the "

direction is negative (positive) for 2/0 o �� ��  ( ��� �� o2/ ).   
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3.2.1   Shift of the Peak in the Far Field for a Circular Dipole  

 The peak in the intensity distribution is located at op q�" �  along the " -axis in the  

image plane, where �  follows from Fig 3.4, given angle o� .  The location of the peak is 

a consequence of the angle dependence of �d/dP , and is independent of the rotation of 

the field lines near the origin of coordinates.  The position scales with the distance oq

between the image plane and the dipole, such that the viewing angle   is independent of 

oq .  In the �  direction, the maximum appears at 0/ op �q� , and this leaves the 

possibility that p�  is finite, rather than zero.  When we set 0/ op �q�  and �" �op / q

in Eq. (3.16), we obtain an equation for p� .  The solution is 

2
oo

2
o2/32

p
)cos(sin5)8(1

sin2
)1(

����

�
���

���
���   , (3.20) 

which is independent of oq , and represents the shift of the maximum in the far field.  For 

a given o� , �  follows from Eq. (3.18), and hence the shift of the peak along the � -axis 

is a function of the observation angle o�  only (apart from the overall 1��� ).  Figure 

3.5 shows the far-field intensity distribution for 2/o �� �  with 1�� .  The maximum 

along the � -axis is located at 3/2p ��� .

 The shift of the peak, p� , is zero for �� ,0o �  and maximum for 2/o �� � , and the 

maximum shift at 2/o �� �  is 3/2|| p �� .  Figure 3.6 shows the behavior of the shift as 

a function of o�  for 1�� .  The shift is due to the rotation in the field lines of the 

Poynting vector, and we see from Fig. 3.1 that the shift is expected to be negative for a 

dipole moment which rotates counterclockwise in the xy-plane.  The right-hand side of
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Figure 3.4   Curve �  and its approximation. 

The solid curve shows � , the solution of Eq. (3.18), as a function of o� , and 
the dashed curve is the approximation given by Eq. (3.19). 

Eq. (3.20) changes sign with � , and therefore for a clockwise rotating dipole moment the 

shift is positive.  When the dipole radiation is emitted by an atom in a laser beam, the 

rotation direction of the dipole moment can be reversed by changing the helicity of the 

driving laser from left-circular to right-circular polarized, or vice versa, for instance by 

inserting a half-wave plate.  The peak in the intensity would then shift over 4/3 in 

dimensionless units, and this corresponds to a distance of )3/(2 �" , with "  the 

wavelength of the radiation.  Although this shift is of nanoscale size, it should be
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Figure 3.5   The far-field intensity distribution for a rotating dipole. 

The graph shows the far-field intensity distribution for a rotating dipole with 
1��  for observation along the xy-plane.  The maximum is located on the � -

axis at 3/2p ��� .
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Figure 3.6   The shift p�  curve and the displacement d�  curve.  

The figure shows the shift p�  of the peak in the intensity distribution and the 
displacement d�  of the central field line as a function of the observation 
angle o� , both for a circular dipole with 1�� .  For 1���  both functions 
change sign.

observable in experiment.  In this fashion, the swirling of the field lines of the Poynting 

vector in the near field could be observed by a measurement in the far field.   

 All field lines of the Poynting vector run radially outward in the far field, but they are 

displaced with respect to an optical ray which would emanate from the exact site of the 

dipole, as illustrated in Fig. 2.7.  For a given observation direction ),( oo �� , there is one 



www.manaraa.com

61

field line which runs exactly into that direction, and this field line intersects the 

observation plane under a right angle (bold field line in Fig. 3.1).  The displacement 

vector of this field line is a vector in the corresponding observation plane, and this vector 

is along the � -axis.  If we write 
odd �� eq � , then the displacement of this field line is 

given by Eq. (2.67), and this yields:

o
2

o
d

sin-2

sin2

�

�
�� ��   . (3.21) 

Both p�  and d�  are shown in Fig. 3.6, and we see that the displacement of the field line 

is larger than the shift of the peak in the corresponding intensity distribution.  The 

intensity profile is determined by a bundle of field lines, as depicted in Fig. 3.1, and the 

direction of the central field line does not necessarily coincide exactly with the location 

of an extremum in the intensity pattern.   

3.3   Far Field Intensity Pattern for an Elliptical Dipole 

 In the most general state of oscillation of a dipole, the dipole moment vector traces 

out an ellipse, and the plane of this ellipse is taken as the xy-plane.  The ellipticity is 

represented by parameter �  in Eq. (2.31).  For 0��  the dipole moment oscillates 

linearly along the y-axis.  For 1���  it rotates along a circle, and for  �!�  the 

oscillation becomes linear along the x-axis.  We shall consider an observation plane 

perpendicular to the y-axis, so that 2/oo ��� �� .  For this example, the intensity  
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becomes 
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   (3.22) 

For 0��  the profile has a minimum at 0�� �"  and a ring-shaped maximum, as 

shown in Fig. 3.3.  For 0��  we have a linear dipole, and the field lines of the Poynting 

vector run in the radial direction, without any curving.  Therefore, there is no shift p�  of 

the extremum (the hole in this case) in the far field.  For 1��� , the extremum is a peak 

at 0�"  and near ,0��  as shown in Fig. 3.5 for 1�� .  The shift of the peak in the � -

direction is 3/2p �� �� .

 Possible extrema along the " -axis follow from setting 0/ �33 "I , 0�� , and we 

also let 1o ��q  for the far field.  This yields 0�"  and 

                       
)1(3

32
2

2

o �

�
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�
�"

q
    , 3/2|| ��   . (3.23) 

When 3/2|| �� , we obtain two solutions o/ q" , in addition to the solution 0�" .

This corresponds to two maxima and a minimum at 0�" .  When 3/2|| �� , we only 

have 0�" , and therefore this must be a maximum.  Similarly, extrema along the � -axis 

follow from setting 0/ �33 �I  and 0�" .  This gives

,
,
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  . (3.24) 
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When dividing by oq , the right-hand side vanishes in the far field.  We then obtain the 

solutions 0/ o �q�  and

3
52 2

o

�� �
��

q
    , 5/2|| ��    (3.25) 

We also find either two maxima and a minimum or one maximum, depending on the 

value of || � .

 For 0��  we have a minimum in both the " - and � -directions at the origin of the 

image plane, as shown in Fig. 3.3, and the maximum has the shape of a ring.  When || �

increases, the locations of the maxima along the coordinate axes change according to Eqs. 

(3.23) and (3.25).  These functions of || �  are shown in Fig. 3.7, and we see that the 

dimension of the hole decreases both along the " -axis and the � -axis.  Since the 

decrease along the � -axis is faster than along the " -axis, the ring distorts.  The 

dimension of the hole shrinks in both directions, and the hole becomes shallower.  When 

|| �  approaches the value of 5/2 , the maxima along the � -axis approach the origin of 

coordinates, and for 5/2|| ��  we only have a maximum at 0/ o �q� .  When || �

increases further towards 3/2|| �� , also the maxima along the " -axis approach the 

origin, and for 3/2|| ��  we have a maximum at 0�" .  Therefore, for 

5/2||0 �4 �  the intensity profile has a hole near the origin.  For 3/2||5/2 �� �

the region around the origin has the appearance of a saddle point, and for 3/2|| ��  we 

have a single peak, as for 1��  in Fig. 3.5.
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Figure 3.7  The location of the maxima as a function of || � .

The graph shows the location of the maxima along the coordinate axes in the 
�" -plane as a function of || � .  For 5/2|| ��  there are two maxima 

along both axes, and there is a hole in the middle.  For 3/2|| ��  there is a 
single peak near the origin of coordinates.  In the region indicated by 5 ,
there is a minimum along the "  direction and a maximum along the �
direction near the origin.

 At the center of the profile we have a minimum, a maximum, or a transition between  

the two, and at the location of this extremum we have 0�"  and 0/ o �q� .  Just as for 

the circular dipole, the condition 0/ o �q�  leaves open the possibility that �  is finite.  

In Eq. (3.24) we let 0/ o !q� .  We then obtain for the coordinates of the extremum 

around the origin of the image plane 
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Figure 3.8   The shift p�  for 0	� .

The graph shows the shift p�  for 0	�  of either the hole or the peak with 
respect to the origin of coordinates.  In the transition region 

3/25/2 �� � , there is neither a hole nor a peak in the intensity 
distribution.

2pp
52

2,0
�

��"
�

��   . (3.26) 

The finite shift p�  is again a result of the rotation in the field lines near the source.  

Figure 3.8 shows p�  as a function of �  for �  positive.  For 5/20 �4 �  the 

extremum is a hole, as shown in Fig 3.9. 
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 Eq. (3.26) represents the shift of the hole with respect to the origin.  We see from the 

figure that the shift of the hole is in the positive � -direction.  In the region 3/2�� ,

the extremum is a peak, and the shift is in the negative direction.  For �  negative, the 

hole shifts in the negative direction and the peak shifts in the positive direction.  For a 

circular dipole we have 1|| ��  and the magnitude of the shift of the peak is equal to 

3/2|| p �� , as in Fig. 3.5.  This shift increases with decreasing || � , and at 3/2|| ��

the magnitude of the shift is 2/3|| p �� .  This is a factor of 1.84 larger than the shift 

for a circular dipole.  The shift of the hole for 5/2|| ��  can be extremely large, but the 

depth and sharpness of the hole decrease with increasing shift.   

3.4   Intensity in the Near Field 

 Thus far we have considered the intensity distribution in the far field.  With 

contemporary experimental techniques, it has become feasible to detect electromagnetic 

radiation with nanoscale resolution very close to a source.  In these experiments the 

electric field vector is measured, including its direction, within a fraction of a wavelength 

from the source.  From these measurements, a field line pattern for the electric field can 

be obtained, and it should be possible to construct the field lines of the Poynting vector 

from these data.  Figure 3.10 shows a typical intensity distribution on an image plane in 

the near field for a rotating dipole moment.  The positive peak at the left-hand side comes 

from the field lines passing through the plane in the outward direction, and the negative 

peak on the right represents field lines passing the plane in the opposite direction.  This



www.manaraa.com

67

0

1
-60

-30

0

30

60

-30
0

30
60

I

"

�

Figure 3.9   The intensity distribution for an elliptical dipole moment with 4.0�� .

The minimum of the hole is located at 0�" , 3/2�� , but that can not be 
seen in the figure. 

image is a direct consequence of the spiraling of the field lines near the source.  A field 

line can pass through the plane on the left, and then this same field line can cross the 

image plane again in the opposite direction on the right.
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3.5   Macroscopic Far-Field Observation of the Near-Field Dipole Vortex 

 The shifts of the peak in Fig. 3.5 and the hole in Fig. 3.9 are of the same order of 

magnitude as the spatial extent of the dipole vortex in Fig. 3.1.  On one hand, this shift 

leads to a possible observation of the dipole vortex through a measurement in the far field, 

but on the other hand, this shift is extremely small.  It also requires a precise calibration 

of the experimental setup, since the shift is measured with respect to the origin of the 

image plane.  Furthermore, the profile has a large background, as can be seen from the 

figures, and the shape of this background (peak, hole or a more complicated distribution) 

depends on the observation angles o� , o� , and on the parameter �  of the ellipse.

 The shift of the peak or hole depends on the sign of � .  The peak in Fig. 3.5 moves 

to 3/2���  when we reverse the direction of rotation of the dipole, so when we change 

the sign of � .  This is obvious from Fig. 3.1, since changing the direction of rotation 

results in the field lines swirling around the z-axis in the opposite direction.  The 

asymmetry in the intensity distribution comes from the rotation of the field lines near the 

source.  In an experiment, changing the direction of rotation can be accomplished by 

changing the helicity of the driving laser, and this would result in the moving of the peak 

or hole to the opposite direction.

3.5.1   The Difference Profile 

 We now introduce the difference profile 

);,();,();,( ��"��"��" ���
 III   . (3.27) 
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Figure 3.10   The near-field intensity distribution for a dipole with 1�� .

When observed in an image plane perpendicular to the y-axis 
( 2/oo ��� �� ), shows a positive and a negative extremum.  This is due to 
the fact that the field lines of the Poynting vector cross the plane in the 
outward direction at the negative �  side, and re-enter the image plane at the 
positive �  side.  This profile is a result of the numerous rotations of the 
field lines around the z-axis close to the source, as shown in Fig. 3.1.
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The idea is that in this difference the large background will cancel, and only the 

asymmetry due to the rotation of the field lines will contribute to this profile.  Therefore, 

any observation of 0'
I  in the far field would confirm the rotation of the field lines in 

the near field.

  From Eq. (3.7) we find 
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�
�
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���
 24
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qq

I   , (3.28) 

with
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and

                  222
o �" ��� qq   , (3.30) 

as the dimensionless distance between the dipole and the observation point in the image 

plane.  The difference profile is independent of the observation angle o� , and the 

dependence on o�  only enters through osin�  in the overall factor 6 .  Therefore, 0�
 I

for observation on the z-axis.  The parameter �  of the ellipse only appears in the overall 

constant 6 .  Consequently, apart from an overall constant, the difference profile is 

independent of the observation angles and is the same for any ellipse.   

 The profile in the image plane is a function of the dimensionless coordinates "  and

� , with oq  as the only parameter.  The function I
  is symmetric in "  and 

antisymmetric in � .  It is easily verified from Eqs. (3.28) and (3.30) that I
  has two 
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extrema on the � -axis, symmetrically located with respect to the origin.  Figure 3.11 

shows I
  for 20o �q , and �  positive.  For �  negative, the overall constant 6  changes 

sign and the maximum and minimum switch positions.  If we indicate the positions of the 

extrema by e�� , then for the far field, where 1o ��q , we obtain 

3
o

e
q

��   . (3.31) 

The location of the peak in Fig. 3.5 is at 3/2��� , and this is a displacement of about 

one-tenth of a wavelength with respect to the origin.  The extrema of the difference 

profile are proportional to oq , so their location is proportional to the distance between the 

dipole and the image plane.  Therefore, these extrema are at macroscopic distances from 

the origin, even though they are a result of the microscopic vortex near the dipole.  Figure 

3.12 shows the location of the extrema with respect to the dipole.  As viewed from the 

dipole, they appear under an angle  , with oe /tan q� � , and this gives �30� .

 The expression for the difference profile holds for all distances oq .  If I
  would be 

measured in the near field, for which 1o ��q , we would have 5/1/ oe �q� , and this 

would give �24� .  Therefore, the angular positions of the extrema are in the range 

�� 3024 ��  .



www.manaraa.com

72

-0.2

-0.1

0.0

0.1

0.2

-60
-30

0
30

60
-30 0 30 60

�
"

I


Figure 3.11   The difference profile I
 .

The figure shows the difference profile I
  in the ),( �"  plane is shown for 
20o �q  and �  positive.  The maxima and minima are located on the � -

axis at 5.11���  and 5.11�� , respectively. 

3.5.2   Experimental Setup and Results 

 In a recent experiment [41], the difference profile was measured for a small 

polystyrene sphere with a diameter of 4.6 �m in a circularly polarized laser beam with a 

wavelength of 532 nm.  The setup of the experiment is shown in Fig. 3.13.  The 
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observation angle was 2/o �� � .  The experimental results are in good qualitative 

agreement with Fig. 3.12.  In the experimental data, as shown in Fig. 3.14, there are some 

small oscillations in the wings which are probably due to the finite size of the object.

 The field lines of the Poynting vector for dipole radiation swirl around an axis in the 

near field, and approach a straight line in the far field, except for a linear dipole for which 

the field lines are straight at all distances to the source.  This vortex structure, shown in 

Fig. 2.7, has the dimension of an optical wavelength or less, so it manifests itself in the 

near field.  However, as also shown in Fig. 2.7, it leads to an asymptotic displacement of 

the field lines in the far field.  In order to observe indirectly the existence of the vortex in 

the near field, we consider the intensity distribution in the far field, and as suggested in 

Fig. 3.1, we anticipate that the displacement of the field lines due to the vortex in the near 

field will yield a shift of the intensity profile in the far field.   

 We have considered the intensity distribution on a plane in the far field for a dipole 

with an elliptical dipole moment, rotating in the xy-plane.  In the image plane we define a 

rectangular coordinate system ),( �" , associated with the spherical-coordinate angles 

),( oo ��  of the location of the image plane, as illustrated in Fig. 3.2.  For a circular dipole, 

the intensity distribution is a single peak in the image plane.  The maximum along the " -

axis is located at op q�" �  (in dimensionless coordinates), where �  is a function of the 

angle o�  of the image plane, as shown in Fig. 3.4.  The location of this maximum scales 

with oq , which is the dimensionless distance between the dipole and the image plane.  

Therefore, the position of this maximum along the " -axis is simply a result of the non- 
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Figure 3.12   The extrema on the � -axis are located at e�  and e�� .

For 0�� , as in the figure, the maximum is at the negative side of the � -
axis.  Both extrema appear under angle   as seen from the location of the 
dipole.  For the figure we took 20o �q , which is just over three optical 
wavelengths.  Here, �30� , and when we increase oq  this angle remains 

�30 .

 

uniformity of the emitted power per unit solid angle.  The position of the maximum along 

the � -axis is given by Eq. (3.20), and this position does not scale with oq .  It is a finite 

shift of the peak, resulting from the displacement of the field lines of the Poynting vector, 

and it is due to the presence of the vortex in the near field. In this fashion, a near field  
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Figure 3.13   Experimental setup. 

Polystyrene spheres with a diameter of 4.62 micrometer were sparsely 
distributed upon a microscope slide. The circularly polarized coherent laser 
light was used as an excitation and a prism was employed to adjust the plane 
of illumination. The scattered light was collected through a coherent 
imaging fiber bundle. The position of individual particles was detected and 
monitored using an additional, incoherent illumination from underneath the 
sample. A cooled CCD array was used to both image the sphere and to 
detect the scattered intensity at desired locations. 
[Reproduced from Ref. 41, with permission from the American Physical 
Society] 
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Figure 3.14   Experimental data. 

Shown are the experimental results for I
 . Here, RI  is the case of right 
circular polarized light, which means 1�� , and LI  represents 1��� . The 
data was obtained through a single mode fiber scanned across a polystyrene 
sphere of 4.6 micrometer diameter. 
[Reproduced from Ref. 41, with permission from the American Physical 
Society] 

phenomenon is reflected in a far field intensity profile, and therefore it should be possible 

to verify the existence of the vortex through a far field measurement.   

 However, the intensity shift is of sub-wavelength order, which may be difficult to 

detect.  We propose to detect the vortex in the near field through a measurement of the 

difference profile in the far field.  The intensity for a rotating dipole is measured at a  
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given point in the observation plane.  Then the helicity of the driving laser is reversed, 

and the new intensity is subtracted from the first.  We have shown that this difference 

profile is a universal function, with only the distance between the dipole and the 

observation plane as a free parameter.  Apart from an overall factor for a given 

observation plane and state of rotation of the dipole (the �  of the ellipse), any profile has 

a peak and a hole as shown in Fig. 3.11.  The location of the extrema is independent of 

the angular position ),( oo ��  of the observation plane, and independent of the magnitude 

of � .  When �  changes sign, the peak and the hole reverse positions.  The most 

important property of the difference profile is that the locations of the extrema are not of 

sub-wavelength order.  The angular location   of the extrema, as shown in Fig. 3.12, is 

30º when the profile is observed in the far field (a few wavelengths or more from the 

dipole).  The distance between the peak and the hole is proportional to the distance 

between the dipole and the observation plane, since   remains constant.  Therefore, the 

separation between the extrema is of macroscopic order, even though they are a result of 

the nanoscopic vortex near the source.  Without the vortex, the difference profile would 

be identically zero, and consequently any macroscopic far-field observation of a I
  as in 

Fig. 3.11 would confirm the existence of this vortex. 
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CHAPTER IV 

ELECTRIC DIPOLE RADIATION NEAR A MIRROR 

 In the previous chapters we have been discussing dipole radiation and its intensity 

distribution in free space.  From Eq. (2.11) we were able to calculate the energy flow 

lines of dipole radiation.  Figure 4.1 shows the field lines of the Poynting vector for a free 

linear dipole.  No radiation is emitted along the dipole axis ( 0��  in Eq. (2.11)), and the 

field lines are drawn more dense into the directions of maximum power per unit solid 

angle ( 2/�� � ).  In a 3D view, the picture is rotationally symmetric around the dipole 

axis. 

 We now consider the dipole located on the z-axis, a distance H above a mirror, and 

the surface of the mirror is taken as the xy-plane.  The position vector of the dipole is 

given by zHe , and when we let 1r  be the location of a field point with respect to the 

position of the dipole, then the position vector of that field point with respect to the origin 

is given by 1rer �� zH .  The setup is illustrated in Fig. 4.2.  The complex amplitudes 

s)(rE  and s)(rB  of this source are given by Eqs. (2.6) and (2.7) with the replacements 

1̂ˆ rr! , the unit vector in the 1r  direction, and 1o1 rkqq �! , the dimensionless distance 

between the dipole and the field point.  The y-axis is taken such that the dipole vector �

is in the yz-plane.  The dipole axis makes and angle   with the z-axis, and therefore



www.manaraa.com

79

)(td

Figure 4.1  Field lines of the Poynting vector for a linear dipole. 

vector �  is 

       cossin zy ee� ��   . (4.1) 

The reflected field by the mirror is identical to the field of an image dipole, located at 

zHe�  and with dipole moment )cos(im
o td �� , where [42] 

 cossinim
zy ee� ���   . (4.2) 

The complex amplitudes r)(rE  and r)(rB  of the reflected field are as in Eqs. (2.6) and 

(2.7) with im�� ! , 2ˆˆ rr ! , 2o2 rkqq �! , and vector 2r  is the position vector of the 

field point with respect to the location of the image dipole, as shown in Fig. 4.2.  The  
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Figure 4.2   A dipole is located on the z-axis, a distance H above a mirror.   

The dipole oscillates along the direction indicated by vector � , which makes 
an angle   with the z-axis.  The reflected field is identical to the field by an 
image dipole, located at a distance H below the mirror, and on the z-axis.  The 
image dipole oscillates along the direction im� , which is also under angle 
with the z-axis, but it has its horizontal component reversed as compared to � .
Vector '�  is perpendicular to � .  A field point can be represented by vector r
with respect to the origin, or by vector 1r  or 2r  with respect to the dipole or 
the image dipole, respectively.  A field point can also be represented by the 
spherical coordinates ),,( ��r  with respect to the origin or the spherical 
coordinates ),,( 11 ��r  with respect to the position of the dipole. 
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total field in the region 0�z  is then the sum rs )()()( rErErE �� , rs )()()( rBrBrB �� .

It can be verified explicitly that this field satisfies the boundary conditions for a perfect 

conductor at 0�z , e.g., the parallel part of )(rE  and the perpendicular part of )(rB

vanish.

 With )(rE  and )(rB  constructed, the Poynting vector )(rS  from Eq. (2.10) can be 

computed.  The expression is rather lengthy, and is given in Appendix A.  The result for 

)(rS  defines a vector field in space, and a field line of )(rS  is a curve for which at any 

point along the curve the vector )(rS  is on its tangent line.  First we set 

)(
8
3)( 2

1

o r�rS
r

P
�

�   , (4.3) 

so that )(r�  is dimensionless.  Since a field line is only determined by the direction of 

)(rS , and not its magnitude, the field lines of )(r�  are the same as the field lines of )(rS .

For a field point r we set rq ok�  for its dimensionless representation.  Let )(uq  be a 

parametrization of a field line, with u a dummy variable.  The field lines )(uq  are 

solutions of the autonomous differential equation 

    )(
d
d q�q
�

u
  . (4.4) 

The field lines in the figures below are made by numerical integration of Eq. (4.4).  Some 

aspects of the numerical integration can be found in Appendix B, which also includes a

sample program.  
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 At the surface of the mirror, )(rE  is perpendicular to the surface and )(rB  is in the 

xy-plane.  It then follows from Eq. (2.10) that )(rS  is in the xy-plane, and therefore any 

field line that approaches the mirror is expected to bend smoothly away from it, as 

suggested in Fig. 1.3b.

4.1   Emission of Radiation 

 For a free dipole the radiation is emitted in all directions, as shown in Fig. 4.1, and 

the Poynting vector is radially outward at any field point.  We now consider the radiation 

field in close vicinity of the dipole for a dipole located near a mirror.  We shall use 

spherical coordinates ),,( 11 ��r  with respect to the location of the dipole, and set 

1o1 rkq �  for the dimensionless distance between the dipole and the field point.  Both the 

electric and magnetic field of the source diverge when approaching the dipole.  The 

electric field diverges as � )/1( 3
1q  and the magnetic field goes as � )/1( 2

1q , as follows 

from Eqs. (2.6) and (2.7), respectively.  The reflected field emanates from the image 

dipole, and close to the dipole both the electric and magnetic field (amplitudes) are 

constant.  Therefore, the electric and magnetic fields close to the dipole are dominated by 

the emitted field by the source.  One may therefore expect that close to the dipole the 

field lines of the Poynting vector come out of the dipole, as in Fig. 4.1, and at some 

distance from the dipole the reflected field becomes comparable to the source field, and 

interference sets in.  This would then lead to a flow line pattern as sketched in Fig. 1.3b.

We shall now show that this is not the case.   
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 The Poynting vector )(q�  (with a factor split off as in Eq. (4.3)) is given by Eq (A11), 

and it has only   and h, with Hkh o� , as free parameters.  We consider the region close 

to the dipole, such that 11 ��q  and hq ��1 .  In physical terms this means that we 

consider field points that are close to the dipole as compared to a wavelength, and we 

assume that the distance between the mirror and the dipole is much larger than the 

distance between the dipole and the field point.  The Poynting vector )(q�  can be 

expanded in a series in 1q , and it is shown in Appendix C that the result is 

])'ˆ(cos3')1cos3)[((sin)( 1
2

1
��q�q� ���� �� hv

q
�2

1sinq̂�  + � )1(   . (4.5) 

Here we have introduced the function 

,-
.

/0
1 �� )2cos(

2
)2sin(

2
1)( h

h
h

h
hv   , (4.6) 

and �  is the angle between �  and the observation direction 1q̂ , e.g., 1ˆcos q� ��� , as in 

Eq. (2.21).  Vector '�  is defined as 

        sincos' zy ee� ���   . (4.7) 

This vector is perpendicular to � , and is directed as shown in Fig. 4.2.

 Without the mirror, the Poynting vector would be �2
1sinˆ)( qq� � , as in Eq. (2.21), 

and in Eq. (4.5) this is the second term on the right-hand side.  The corresponding field
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lines would run straight out from the dipole if this were the leading term at a close 

distance.  In Eq. (4.5), however, the first term is � )/1( 1q , and for 1q  small enough this 

term will dominate over the free-dipole term �2
1sinq̂ .  Since this term is due to 

interference between the source and the image field, we conclude that very close to the 

dipole the power flow is determined by interference rather than free emission.  The term 

�2
1sinq̂  is � )1( , as are the remaining terms of the expansion, but it is split off explicitly 

in Eq. (4.5) for reasons described below.

 In the neighborhood of the dipole, the electric field is � )/1( 3
1q  and the magnetic field 

is � )/1( 2
1q .  When computing the Poynting vector, this may seem to lead to �)(rS

� )/1( 5
1q , with Eq. (2.10), and for )(q�  this would be � )/1( 3

1q .  However, the high-order 

terms cancel exactly and we get �)(q� � )1(  for a free dipole, and this is the second term 

on the right-hand side of Eq. (4.5).  The cross term between the electric field of the 

source, which is � )/1( 3
1q , and the magnetic field of the image, which is � )1(  at the 

location of the dipole, gives a contribution of � )/1( 1q  to )(q� , and this is the first term 

on the right-hand side of Eq. (4.5).  Consequently, sufficiently close to the dipole this 

interference term is larger than the source term �2
1sinq̂ .

 The emission pattern of the radiation is determined by the energy flow lines in the 

immediate neighborhood of the source.  In order to determine the structure of this pattern 

we first consider a field point 1q  in a plane through the dipole, which is perpendicular to 

vector '� .  For such a field point we have 0'ˆ1 ���q , and therefore the � )/1( 1q  term in Eq. 

(4.5) is proportional to '� .  Consequently, in this plane the Poynting vector )(q�  is 
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perpendicular to the plane, and the corresponding field lines cross the plane under a 90º 

angle.  The factor of 1cos3 2 �� , multiplying '� , becomes zero when 3/1cos ��� .

Since �  is the angle between �  and 1q̂ , the condition 3/1cos ���  defines two lines 

in the plane on which the � )/1( 1q  contribution to the Poynting vector vanishes.  These 

lines are under 54.7º with the �  axis, and are indicated by ��  and ��  in Fig. 4.3.  Across 

these semi-singular lines the Poynting vector changes direction and this leads to a 

rotation of the field lines around these lines in the plane.  The orientation of the Poynting 

vector in this plane is shown in Fig 4.3, and Fig. 4.4 shows several field lines resulting 

from this rotation.  Apparently, when an oscillating electric dipole is located near a mirror, 

the radiation is emitted in a pattern of four vortices.  Each field line swirls around one of 

the lines ��  and ��  in the plane.  Two vortices are in front of the yz-plane, as shown in 

Fig. 4.4, and two are in the back.  The Poynting vector is proportional to )(hv , which 

depends on the distance between the dipole and the surface of the mirror.  When h

changes, this function may change sign, and in that case the orientation of the rotation of 

the field lines around the semi-singular lines reverses.

 In Eq. (C4) of Appendix C, the �(1) term of Eq. (4.5) is given explicitly, and we see 

that this term vanishes as h/1~  for h large, except for the free-dipole part �2
1sinq̂ ,

which is independent of h.  Therefore, for a field point on a semi-singular line the 

Poynting vector is approximately equal to 1ˆ)3/2( q , for h not too small.  On these lines 

the � )/1( 1q  term vanishes, but the Poynting vector is finite, and radially outward.  From 

the diagram in Fig. 4.3 we can easily derive parameter equations for the lines ��  and �� .



www.manaraa.com

86

                        

�

xe

��

��

8
8

8

8
8

8
8

88
8

8
8

88 8

88
8
8
8

8

8

8

88
88

8

8
8

Figure 4.3   The plane through the dipole which is perpendicular to '� .

It follows from Fig. 4.2 that the plane is spanned by vectors �  and xe , and 
the view is such that '�  is out of the page.  The Poynting vector in this plane 
is perpendicular to the plane, indicated by � and �.  The Poynting vector 

)(q�  has an overall factor of sin)(hv , and the orientation is shown for the 
case where this factor is negative (as in Fig. 4.4).  The Poynting vector 
changes direction across the lines ��  and �� , and this gives rise to a rotation 
of the field lines around these semi-singular lines.  This is shown 
schematically for the ��  line.  For a field point on the '�  axis we have 

0cos �� , and it then follows from Eq. (4.5) that )(q�  is in the '�  direction 
for 0sin)( �hv .  Therefore, at the origin of the plane, the Poynting vector is 
out of the page.
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Figure 4.4   Four-vortex structure. 

The field lines of the Poynting vector for electric dipole radiation emitted 
near a mirror exhibit a vortex structure.  Shown are field lines for 4/� �
and �2�h .  In the region 0�x  the field lines (solid curves) swirl around the 
semi-singular lines of Fig. 4.3.  The dashed field lines are in the yz-plane, and 
they are closed loops.  The other two vortices are behind the yz-plane, and are 
not shown in the figure.

The result is, in matrix form 
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�
�
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�
�
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,
cos
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2
0
0

:

�   , (4.8) 
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where xkx o� , yky o�  and zkz o�  are the dimensionless Cartesian coordinates of 

points on the lines.

4.2   Field Lines in the yz-Plane 

 The field lines of the Poynting vector are in general curves in 3D.  For a field point in 

the yz-plane, however, the Poynting vector is in the yz-plane, and therefore the field lines 

are 2D curves in the yz-plane.  The vortices from Fig. 4.4 become closed loops when in 

the yz-plane, as shown by the dashed curves in Fig. 4.4.  Figure 4.5 shows field lines in 

the yz-plane (obtained with the exact solution of Appendix A) on a larger scale.  The 

inner two loops are the same as the dashed loops of Fig. 4.4.  Vector �  (not shown) is 

under 45º with the z-axis, and we see that in the neighborhood of the dipole all field lines 

cross the �  axis under 90º, and all run in the same direction, as expected from Fig. 4.3.  

All field lines along the �  axis in Fig. 4.3 go into the page, except for the field line 

through the origin, which comes out of the page.  The result is that in Fig. 4.5 all field 

lines come out of the dipole along the '� -axis.  In the yz-plane, all radiation is emitted in 

the same direction, which is the direction perpendicular to the direction of oscillation of 

the dipole.  This in sharp contrast to emission in free space for which radiation is emitted 

in all directions (except along the dipole axis).

 The field lines near the dipole form closed loops.  This means that the energy 

propagating along these field lines returns to the dipole at the other side.  The closed 

loops do not contribute to the overall emitted power, but they give a circulation of power
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Figure 4.5   The field lines of the Poynting vector for a dipole oscillating above mirror. 

The figure shows field lines of the Poynting vector for a dipole oscillating 
under 45º with the z-axis, and located at a distance �2�h  above the mirror.  
The z-axis is up and the y-axis is to the right.  Very close to the dipole the 
field lines are closed loops, and just below the dipole a singularity appears.

in the near field.  This situation is reminiscent of the case of two oscillating dipoles close 

together, where energy is emitted by one dipole and is subsequently absorbed by the 

other dipole.  For such a case, field lines run from one dipole to the other, and this 

mechanism does not contribute to the overall emitted power either [43].   
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 At a larger distance from the dipole, the free-dipole term �2
1sinq̂  will eventually 

become larger than the � )/1( 1q  term, and the field lines will run outward.  Since just 

below the dipole in Fig 4.5 the field lines run into the dipole, we expect a singularity 

along the '� -axis in this area.  For a field point on the '� -axis we have 2/�� � .  The 

Poynting vector of Eq. (4.5) becomes 

')(sinˆ)(
1

1 �qq� hv
q


��  + � )1(   , (4.9) 

where the first term, 1q̂ , is the free-dipole term.  At a singularity, the Poynting vector 

vanishes, and when neglecting the � )1(  term, this occurs at the field point 

      sin)('1 hv�q �   . (4.10) 

This point is on the '� -axis, and indicated by a little circle in Fig. 4.5.  Equation (4.10) 

gives the distance between the singularity and the dipole as |sin)(| hv .  We can view 

this distance as a measure for the spatial extent of the loops in the very near field of the 

dipole.  For 0�  this distance is zero, because the � )/1( 1q  is absent.  So for a dipole 

oscillating along the z-axis there are no loops.  For 0' , the size of the loops is 

determined by the function )(hv  of Eq. (4.6), and the graph of this function is shown in 

Fig. 4.6.  For h large, this function falls off as h/1~ , and therefore the radial extension of 

the loops is approximately hq /1~1 � .  Consequently, when the distance between the 

dipole and the mirror increases, the loops diminish in size.  At a root of )(hv  the loops 

vanish, and when )(hv  reverses sign, the field lines of the loops reverse direction.  In that 
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case, the singularity appears at the top side of the dipole as shown in Fig. 4.7, rather than 

below it as in Fig. 4.5.

 For h small we have  

��
3

2)( hhv � )( 3h   , (4.11) 

so for 0!h  this function goes to zero.  The � )/1( 1q  term, which is responsible for the 

loops, is proportional to )(hv , and therefore the loops disappear when the distance h

between the dipole and the mirror vanishes.  In the limit 0!h  the exact solution of 

Appendix A can be simplified, and the result is

� 22 coscosˆ4)( qq� �   , (4.12) 

which holds in 3D.  The Poynting vector is proportional to the radial unit vector q̂  at all 

distances, and therefore the field lines are straight lines.  For 0!h  the loops and the 

singularity disappear, and the four vortices from the previous section are not present 

either.   

 The pattern of energy emission in the yz-plane is illustrated in Fig. 4.5, showing that 

the field lines either form closed loops or bend somewhat and then run away from the 

dipole.  It can be seen from the scale in the figure that this pattern is of a very sub-

wavelength nature.  Figure 4.8 shows a larger view of the field lines of energy transport 

near the mirror.  The details of the flow lines of Fig. 4.5 cannot be resolved on the scale 

of Fig. 4.8.  Field lines that run downward from the dipole approach the mirror (the xy-
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Figure 4.6   The function )(hv .

The leading term of the Poynting vector in the near field is proportional to the 
function )(hv  from Eq. (14), which is shown in this graph.  This function 
determines the dependence of this term on the distance between the dipole 
and the mirror.   

plane), and an intricate field line pattern appears due to interference between the source 

field and the reflected field.  We observe numerous singularities and three vortices for the 

parameters chosen for the figure ( 4/� � , �2�h ).  For other values of the parameters 

a similar pattern is observed, and typically the number of singularities and vortices 

increases with h.  On the other hand, for 0�  there are no singularities (except for point
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-0.3 0.3

4.8

4.2
Figure 4.7   Energy flow lines for a dipole oscillating above mirror when 5.4�h .

The figure shows field lines of the Poynting vector for a dipole oscillating 
perpendicular to the z-axis, and located at a distance 5.4�h  above the mirror.  
The z-axis is up and the y-axis is to the right.  Very close to the dipole the 
field lines are closed loops, and just below the dipole a singularity appears.

g directly below the dipole, and at the mirror surface) and all field lines more or less bend 

at the mirror as in Fig. 1.3b.  To the right of the z-axis and above the dipole (not shown) 

the field lines are typically smooth curves without any interesting structure, although 

exceptions are possible.  The existence of optical vortices resulting from interference  
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Figure 4.8   Field lines in the yz-plane. 

The figure shows the field lines of the Poynting vector in the yz-plane for a 
dipole located at a distance of one wavelength from the mirror ( �2�h ), 
oscillating under an angle of 45º with the z-axis ( 4/� � ).  We observe a 
complex flow line pattern with singularities and vortices.  Points a, b and c
are optical vortices, and points e, f, g and h are singularities where the field 
lines split. Singularity d is a point on the singular circle in the xy-plane (Sec. 
4.3).

between radiation and its reflection at a surface was predicted for the first time by 

Braunbek and Laukien for the reflection of a plane wave by the Sommerfeld half-plane 

[1].  The most common optical vortices are vortices in Laguerre-Gaussian laser beams 
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[10-13], and their structure is related to the angular momentum carried by the beam.  

Another type of optical vortex is the rotation in the field lines of the Poynting vector of a 

multipole field [44].  These vortices are due to the emission mechanism of the source 

rather than interference.   

 Points a, b and c in the figure are singularities at the centers of vortices, and the other 

named points, except for point d, are regular singularities where field lines abruptly 

change direction.  Interestingly, there are field lines that start at vortex a and end at 

vortex b.  These field lines represent a local energy flow where the energy does not 

directly originate from the location of the dipole.  Field lines emanating from vortex a

either end in vortex b or they run to the far field, and field lines ending at vortex b either 

come from vortex a or from the dipole.  Other field lines coming from the dipole swing 

around either vortex a or b and then run to the far field.  At point e, some of these field 

lines seem to collide, and this leads to the singularity at point e.  At the singularities f and 

g, field lines split in two directions.  An enlargement of the very small vortex at point c is 

shown in Fig. 4.9.  Since the field lines split just above the vortex, there has to be a 

singularity in that region, which is point h.

 For other values of the parameters a similar pattern is observed, and typically the 

number of singularities and vortices increases with h.  An exception is 0� , for which 

there are no singularities, except for the point directly below the dipole, at the mirror 

surface.  For this case of a perpendicular dipole all field lines more or less bend at the 

mirror as in Fig. 1.3b, and this is illustrated in Fig. 4.10.  The field line pattern for a
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Figure 4.9   Enlargement of the vortex c of Fig. 4.8.

At the center of the vortex is a singularity, and very nearby is the singularity 
labeled h.

parallel dipole ( 2/� � ) is shown in Fig. 4.11, and we see that there are fewer 

singularities than in Fig. 4.8 where the dipole oscillates under 45º with the z-axis.

 At a singularity the Poynting vector is zero.  This can be a result of 0)( �rE ,

0)( �rB  or *)()( rBrE �  imaginary.  Since �  and im�  are in the yz-plane, it follows 

from Eq. (2.7) that )(rB  only has an x-component for a field point r  in the yz-plane.
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Figure 4.10   The field line pattern for a dipole oscillating perpendicular to the plane of
the mirror at a distance �2�h .

For this case there are no vortices and singularities, except for the point 
directly below the dipole at the mirror surface.  The field line pattern is 
reflection symmetric with respect to the z-axis.   
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Figure 4.11   Field lines for a dipole oscillating parallel to the surface at a distance 
�2�h .

In this graph, several singularities appear and they are indicated by little 
white circles.  The energy flow pattern is reflection symmetric with 
respect to the z-axis.
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The amplitude )(rB  is complex, so for )(rB  to vanish it has to hold that both the real 

and the imaginary parts of the x-component have to vanish simultaneously.  Working out 

the expression for )(rxB  gives 

0]tan)([cossin]tan)([cossin
3
2

222
3
1

111 ���
�

���
�  zhy

q
qqqzhy

q
qqq   , 

   (4.13) 

for 0)(Re �rxB  and

0]tan)([sincos]tan)([sincos
3
2

222
3
1

111 ���
�

���
�  zhy

q
qqqzhy

q
qqq   ,  

   (4.14) 

for 0)(Im �rxB , and here 22
1 )( hzyq ���  and 22

2 )( hzyq ��� .  Equations 

(4.13) and (4.14) define two sets of curves in the yz-plane, and at any intersection the 

magnetic field is zero.  These curves are shown in Fig. 4.12, and we see that the curves 

intersect at the location of the three vortices in Fig. 4.8.  Therefore, the vortices are due to 

the disappearing of the magnetic field at these points.  We have verified numerically that  

at the other singularities *)()( rBrE �  is imaginary, except for point d where we have 

again 0)( �rB .

4.3   Field Lines in the Plane of the Mirror 

 Singularity d in Fig. 4.8 appears to be of a different nature that the other singularities.  

There is no vortex at this point, there is no splitting of the field lines, and there is no 

collision between field lines running in different directions, like for instance at singularity
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Figure 4.12   The solutions of 0Re �xB  and 0Im �xB .

The solutions of 0Re �xB  and 0Im �xB  are the solid and dashed curves, 
respectively, and the parameters for this graph are the same as for Fig. 4.8.  
At an intersection the Poynting vector is zero, and the intersections a, b and 
c correspond to the three vortices in Fig. 4.8.

 

e.  Point d is in the surface of the mirror, and field lines in the neighborhood have the 

appearance of jumping over a bump.  Singularity g in Fig 4.8 is also in the plane of the 

mirror, and it can be verified easily from the explicit expressions in Appendix A that 

0)( �q�  at the origin of coordinates.  For a point in the plane of the mirror, the Poynting 

vector is in the xy-plane, and therefore field lines through any point in the mirror surface 
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are 2D curves in the mirror plane.  In the plane of the mirror we have 21 qq � , and 

expression (A11) for )(q�  simplifies considerably.  When we introduce the vector 

        tanhyev ��   , (4.15) 

the Poynting vector at the point in the xy-plane with position vector q  can be expressed 

as

)(coscoscos4)(
11

vqq� ���
�

�
��
�

�
�� �

q
h

q
  . (4.16) 

Vector v  represents a point on the negative y-axis (for 0tan � ), and for vq �  this 

gives 0)( �q� .  Therefore, the singularity d in Fig. 4.8 has v  as position vector, and so 

the y -coordinate of this point equals tanh� .  The Poynting vector is proportional to 

vq � , which is the position vector q  with respect to the singular point v .  So the 

Poynting vector everywhere in the xy-plane is straight out from point v , and therefore the 

field lines are straight lines coming out of or running towards point v .

 With some manipulations of the expressions in Appendix A we find 

)tan(coscos
1

h
q y ��� � qe   , (4.17) 

and combination with Eq. (4.16) yields the expression 

))](([cos4)( 3
1

2
vqvqqq� ����

q
   , (4.18) 
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for the Poynting vector.  In this form we see immediately that )(q�  vanishes at the origin 

of coordinates, and this is singularity g from Fig. 4.8.  Furthermore, the factor )( vqq ��

is zero when vector q  is perpendicular to vector vq � .  As can be seen most easily from 

Fig. 4.13, this defines a circle in the xy-plane.  For any q  on this circle we have 0)( �q� ,

and therefore this is a singular circle.  Across this circle, the Poynting vector changes sign 

and the field lines change direction.  All field lines are straight and go through point v  on 

the y-axis.  Outside the singular circle the angle between q  and vq �  is less than 90º, so 

0)( ��� vqq , and therefore )(q�  is in the outward direction.  Consequently, inside the 

circle the field lines run from the circle towards the singularity at point v , and this gives 

the field line picture shown in Fig. 4.14.

 For a dipole oscillating along the z-axis we have 0� , and the circle shrinks to a 

point at the origin of coordinates.  Then all field lines run radially outward from the 

origin.  For a dipole oscillating along the y-axis we have 2/� ! , and the radius of the 

circle goes to infinity.  Vector v  becomes undefined, and this limit has to be considered 

more carefully.  We find  

yy
q
h eq� 3
1

24)( �   . (4.19) 

The field lines are parallel to the y-axis and the x-axis is a singular line.  All field lines 

start at a point on the x-axis and run parallel to the y-axis to the left and the right.  This is 

the limit of Fig. 4.14, where the circle stretches out so that it becomes the x-axis.  The 

inside of the circle becomes the region 0�y , and all field lines run to the point v , which



www.manaraa.com

103

Figure 4.13   A field point in the xy-plane is represented by the position vector q .

Vector v  is a fixed vector, directed along the y-axis, and the same field 
point can be represented by the position vector vq �  with respect to the 
endpoint of vector v .  The set of all field points that satisfy the equation 

0)( ��� vqq  then form the shown circle, since this equation implies that 
the angle between q  and vq �  is 90º.

is now at  ��y  on the y-axis.

 In summary, when an oscillating electric dipole emits radiation in the vicinity of a 

mirror, the pattern of energy emission is determined by interference between the electric 

field of the dipole and the magnetic field of the reflected radiation.  The field lines of 

v

qvq �

x

y
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energy flow form a set of four optical vortices, two of which are shown in Fig. 4.4.  The 

field lines spiral around two semi-singular lines through the dipole, and these lines are 

oriented as shown in Fig. 4.3.  Their directions are determined by angle  , which is the 

angle between the oscillation direction of the dipole and the z-axis.  The pattern is 

symmetric under reflection in the yz-plane.  In the yz-plane, these vortices reduce to 

closed loops, as shown in Fig. 4.5.  It is also found that for emission in the yz-plane all 

energy is emitted in a single direction, which is perpendicular to the dipole.  This in 

contrast to the emission in free space, where energy is emitted in all directions.  Some of 

the emitted energy propagates along a closed loop, and so it returns to the dipole.  Since 

at a larger distance all energy radiates away from the source, there has to be a singular 

point near the dipole, as shown in Fig. 4.5.  The location of this point is approximately 

given by Eq. (4.10).  The function )(hv  in this equation goes to zero with increasing h, so 

when the distance between the dipole and the surface of the mirror becomes larger, the 

singularity moves closer to the dipole, and hence the dimension of the loops becomes 

smaller.   

 Figure 4.8 shows the field line pattern in the yz-plane on a much smaller scale.  We 

find that numerous singularities are present in the flow line pattern and there are three 

vortices (for the parameters in the figure).  The vortices are due to the vanishing of the 

magnetic field at the centers of the vortices.  Of particular interest is singularity d in the 

figure.  It was shown that this singularity is a point on a singular circle in the plane of the  
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Figure 4.14   The field lines in the plane of the mirror (for 0tan � ).

The two black dots on the y-axis are the singularities d and g from Fig. 4.8, 
which are located at point v  and the origin, respectively.  In the xy-plane,
these singularities appear to be the intersections of a singular circle with the 
y-axis.  The diameter of the circle is the magnitude of vector v , which is 

|tan| h .  When viewed from outside the circle, all field lines appear to 
come from the singularity at point v , but inside the circle all field lines run 
towards the singularity.  For 0tan � , the circle is located in the region 

0�y .
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mirror.  Inside this circle, the field lines run from a point on the circle to singularity d,

and outside the circle they run from a point on the circle to the far field, and such that the 

field lines appear to come from singularity d.  Also, in the plane of the mirror all field 

lines are straight, as follows from Eq. (4.18).   

 When sub-wavelength resolution of the energy flow is taken into consideration, then 

the interference pattern between dipole radiation and its own reflection from a mirror is 

far from trivial.  A ray diagram as in Fig. 1.3a or an educated guess as in Fig. 1.3b are not 

even close to the intricate pattern of energy flow that appears in this simple system.  

Particularly fascinating is the fact that for a linear dipole the radiation is emitted as a set 

of four vortices, except when the dipole oscillates exactly perpendicular to the mirror. 
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CHAPTER V 

DIPOLE RADIATION IN A DIELECTRIC AND A NEGATIVE INDEX OF 

REFRACTION MATERIAL 

 In the previous chapters we have been discussing dipole radiation in free space and 

near a mirror surface.  Now we shall consider the energy transport of dipole radiation in a 

dielectric and a metamaterial with a negative index of refraction.  The wave number mk

in a material with (relative) permittivity r�  and (relative) permeability r�  is related to 

the angular frequency �  of the light by the dispersion relation 22
rr

2
m / ck ���� . In an 

ordinary dielectric we have 0r ��  and 0r �� , when neglecting possible imaginary 

parts of r�  and r� , which account for absorption, and so the wave number is 

ck /rrm ���� .  For a metal, the dielectric constant is negative in the visible region, 

which makes 2
mk  negative and mk  imaginary.  Therefore, a metal does not support 

propagating modes, but only evanescent modes which decay exponentially away from the 

surface of the material.  A metamaterial is an artificially structured medium in which both 

r�  and r�  can have any value in principle.  When both r�  and r�  are negative, the 

material has a negative index of refraction (see below).  The wave number is again

ck /rrm ���� , which is real and positive.  Thus such a metamaterial supports 

propagating modes, like a dielectric.
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5.1   Introduction to Metamaterials 

 The electromagnetic response of a medium is accounted for by the (relative) 

permittivity r�  and the (relative) permeability r� .  Both r�  and r�  are in general 

complex, with a non-negative imaginary part, and they depend on the angular frequency 

�  of the spectral component under consideration.  The index of refraction n of the 

medium is a solution of 

       rr
2 ���n   , (5.1) 

and for causality reasons (below) we should take the solution with 

0)Im( 	n   . (5.2) 

For a dielectric, r�  is approximately real and positive, 1r �� , and the index of refraction 

is rr���n , which is positive, apart from a very small positive imaginary part.  For a 

metal with �  below the plasmon frequency, the real part of r�  is negative, the imaginary 

part of r�  is small, and 1r �� .  Therefore, n is approximately positive imaginary.  

Paramagnetic materials have a permeability larger than unity, and for diamagnetic 

materials we have 10 r �� � .  Media with a negative permeability do not occur naturally, 

or in man-made chemical compounds.   

 Metamaterials are artificially structured composites, consisting of arrays of sub-

wavelength structures, and their electromagnetic response may not be determined only by 

the material from which they are constructed, but also by the geometry of the design.  The 

typical size of a unit cell of such a composite is well below the wavelength of the 

radiation under consideration, and this justifies the description of the material as a 
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continuum with permittivity r�  and permeability r� .  Of particular interest are 

metamaterials for which the real parts of both r�  and r�  are negative and the imaginary 

parts of both are small, at a given frequency � .  It then follows from Eqs. (5.1) and (5.2) 

that the real part of the index of refraction n is negative, and such materials are called 

negative index of refraction materials, or NIM’s for short.

 In the first experimental demonstration of a negative index of refraction structure 

[45,46], the composite consisted of split-ring resonators, to obtain a negative r� , and a 

grid of thin metal wires, needed to lower the plasma frequency to the desired range.  It 

was shown that this composite has a negative index of refraction in the microwave range 

of the electromagnetic spectrum.  Many variations in the design structure of the 

composites have been studied, with attempts to manipulate either the plasma frequency of 

the permittivity of the metal or the permeability of the split-ring resonators [47-57].  After 

the successful proof-of-concept demonstrations of the experimental feasibility of 

constructing a NIM in the microwave region, the quest was on to design composites that 

operate in the visible region of the spectrum.  The design with the split-ring resonators 

does not scale down to smaller wavelengths, due to increase of loss.  New nanostructured 

materials have been developed, and negative index of refraction has been reported in the 

THz and near-infrared regions [58-66].  In 2005, the first NIM operating at optical 

wavelengths was reported [67,68].  The latest designs involve metal-dielectric 

nanostructures with unit cell widths as small as 10 nm, lattices with coated dielectric  
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spheres, or composites with nanoclusters or nanowires [69-73].  At the present state-of-

the-art, loss in the material seems to be the main issue to be addressed in future designs.

5.2   Negative Index of Refraction Materials 

 We shall consider time-harmonic fields, oscillating at angular frequency � .  The 

electric field can then be written as 

  ])([Re),( tiet ��� rErE   , (5.3) 

with )(rE  the complex amplitude, and the magnetic field )(rB  can be represented 

similarly.  The time-averaged Poynting vector is defined as 

    )](*)(
2
1[Re)( rBrErS ��
�

  , (5.4) 

with ro��� � , and electromagnetic energy flows along the field lines of this vector field.  

When both r�  and r�  are negative, the material is transparent, just like an ordinary 

dielectric, and Maxwell’s equations admit traveling plane-wave solutions.  When mk  is 

the wave vector of the plane wave, it can be shown easily that in such a material (NIM) 

the Poynting vector is directed opposite to the wave vector.  With the time dependence as 

in Eq. (5.3), the phase velocity of the wave is into the direction of the wave vector mk .

Therefore, the phase velocity is opposite to the direction of energy propagation, and such 

materials are said to have a negative phase velocity.  This possibility was shown for the 

first time by Sivukhin [74].  Mandel’shtam [75] showed that this property has interesting 

consequences when an incident plane wave refracts at an interface with a NIM.  Figure  
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Figure 5.1 A plane wave with wave vector k is incident upon an interface. 

The wave partially reflects and partially transmits into the material.  Due to 
the boundary conditions at the interface, the wave vectors of all waves must 
have the same parallel component ||k  with respect to the interface.  For 
transmission into a dielectric, this gives the familiar picture shown here. 

5.1 shows the refraction for an ordinary dielectric, and Fig. 5.2 illustrates refraction into a 

material with negative r�  and r� , e.g., a NIM.  The parallel components of all wave 

vectors have to be the same, due to the boundary conditions.  In the NIM, the energy 

propagates against the wave vector, and since the energy transport has to be away from 

the interface, the wave vector mk  of the refracted wave must be as shown in Fig. 5.2.  

Consequently, the direction of energy propagation in the negative index of refraction 

material is into the direction indicated by the Poynting vector S in the figure.  As 

compared to Fig. 5.1, the light bends to the other side of the normal to the interface.   

 Many other unusual properties have been predicted for NIM’s, such as an inverse 

Doppler shift and Cerenkov effect [76].  A historical account of negative index of  

dielectric

k

rk

mk

S

=||k
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Figure 5.2 The same plane wave incident upon a NIM.   

In a NIM, the energy propagates against the wave vector, and therefore the 
wave vector mk  in the medium must be as shown here.  As a result, the 
propagation direction of the energy, indicated by the Poynting vector S, of the 
transmitted wave is at the opposite side of the surface normal, as compared to 
refraction into a dielectric.

refraction (and negative group velocity) can be found in [77].  A particularly interesting 

feature of a NIM is that it has the ability to focus radiation from a point source, as shown 

by Veselago [78]  When radiation is incident upon a slab of negative index of refraction 

material, as shown in Fig. 5.3, then at the first interface the rays refract as in Fig. 5.2, and 

upon exiting the layer at the second interface, the rays are transmitted at the opposite side 

of the normal, as compared to the similar situation for a dielectric.  As a result, a ray

=||k

NIM

k

rk

S
mk
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diverges
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dielectric NIM
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1n
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Figure 5.3 Light from a point source is incident upon a layer of dielectric material (left)  
 and a ray diagram for a slab of NIM (right). 

The rays emerge as diverging below the material for a dielectric, as shown in 
the diagram on the left. When the index of refraction of the NIM is the 
opposite of the index of refraction of the surrounding dielectric, the rays 
focus to a point, as show in the diagram on the right. 

coming from the source crosses the optical axis as shown, whereas for a dielectric layer 

of material, the rays diverge away from the axis.  When the index of refraction of the 

NIM is the opposite of the index of refraction of the medium outside the layer (usually 

vacuum or air, so 11 �n ), then all rays go through the same point below the medium, and 

hence there is a focal point which represents the image of the source.  In this sense, a 
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layer of metamaterial behaves like a lens, provided there is a perfect index matching with 

the dielectric above and below.

 It was shown by Pendry in 2000 [79] that a layer of negative index of refraction 

material has the ability to amplify the evanescent waves upon transiting the layer.  

Therefore, the evanescent waves will contribute to the image at the focal point, provided 

this point is at a sub-wavelength distance from the second interface.  In principle, it may 

therefore be possible to obtain an image with sub-wavelength resolution.  A perfect index 

matching is required, so the index of refraction of the NIM should be -1 (if surrounded by 

vacuum).  After the publication of this landmark paper, such a layer of negative index of 

refraction material has become known as a superlens.   

 In this chapter we shall demonstrate another peculiar property of energy transport in a 

NIM.  When a small (compared to a wavelength) particle is embedded in a dielectric and 

irradiated by a circularly-polarized laser beam, the induced electric dipole moment is a 

vector which rotates in a plane perpendicular to the propagation direction of the beam 

(taken to be the z-axis).  The field lines of the Poynting vector of the emitted electric 

dipole radiation are curves which swirl around the z-axis and each field line lies on a cone.

The field lines form a vortex pattern, and two typical field lines are shown in Fig. 5.4.  

We shall show that when the particle is embedded in a material with negative r�  and r� ,

the field lines of energy flow of the same rotating dipole moment wind again around the 

z-axis and each field line lies on a cone, but the direction of rotation around the z-axis is  
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Figure 5.4 Two field lines of the Poynting vector for the radiation emitted by a rotating 
dipole moment embedded in a dielectric.   

We use dimensionless variables xkx o , yky o  and zkz o� , so that 2
corresponds to one wavelength.  The  and  axes have been lowered to 
improve the view.  The direction of rotation of the dipole moment is 
counterclockwise when viewed down the positive z-axis.  The field lines 
swirl around the z-axis while remaining on a cone.  The direction of rotation 
of the field lines is the same as the direction of rotation of the dipole moment.

x y

z



www.manaraa.com

116

-2

-1

0

1

2

-2
-1

0
1

2

-1
0

1
2

Figure 5.5 Energy flow field lines for emission of radiation by a particle embedded in a 
NIM.

The direction of rotation of the field lines around the z-axis is reversed, as 
compared to the rotation of the field lines in Fig. 5.4.
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reversed as compared to the field lines for emission in a dielectric.  This feature is shown 

in Fig. 5.5.

5.3   Green’s Function and the Index of Refraction 

 The electric and magnetic fields of the radiation emitted by a particle embedded in an 

infinite medium with permittivity r�  and permeability r�  are solutions of Maxwell’s 

equations.  These solutions can be expressed in terms of the Green’s function )(rg  for 

the scalar Helmholtz equation.  This function is the solution of 

)(4)()( 2
o

22 rr �9���� gkn   , (5.5) 

with ck /o ��  and 2n  is given by Eq. (5.1).  A solution of Eq. (5.5) is 

                      
r

eg
rinko

)( �r   . (5.6) 

This solution involves the index of refraction n.  However, Eq. (5.1) only determines 2n ,

given r�  and r� , and this leaves an ambiguity for the choice of n.  In general, r�  and r�

are complex, and therefore also n and 2n  are complex.  The two solutions of Eq. (5.1) 

differ by a minus sign, and are each others reflection in the origin of the complex plane.  

The Green’s function represents a spherical wave, centered at the origin of coordinates, 

and causality requires that such a wave cannot grow exponentially in amplitude with 

increasing r.  It then follows from (5.6) that we need to take the solution n for which 

0)Im( 	n .  A moment of thought then shows that this still leaves an ambiguity for the 

choice of n when the product rr��  is positive.  Causality requires that the imaginary 
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parts of r�  and r�  are non-negative, and we then see that we can only have 0rr ���  if 

r�  and r�  are both positive or both negative.  In order to resolve this ambiguity, we note 

that both r�  and r�  will still have a very small positive imaginary part, representing 

damping in the material.  By taking the limit where these imaginary parts vanish, we find 

that for 0rr ���  the solution of Eq. (5.1) should be taken as 

      rrn ���   , r�  and r�  positive  (dielectric)  , (5.7) 

      rrn ����   , r�  and r�  negative  (NIM)  . (5.8) 

 When a time dependence as in Eq. (5.3) is considered, the Green’s function leads to 

spherical waves waves of the form exp[i( trnk ��o )]/r.  For a dielectric we have 0�n ,

and such a wave is an outgoing wave with phase velocity nc / .  For 0)Re( �n  this is an 

incoming wave rather than an outgoing wave and therefore the phase velocity is inward, 

or negative.  This situation is reminiscent of the case for a plane wave, as shown in Fig. 

5.2, where the energy propagates against the wave vector.

5.4   Electric Dipole Radiation 

 The induced electric dipole moment of a particle can be written as 

  )(Re)( tiet ��� dd   , (5.9) 

with d the complex amplitude.  When this dipole is located at the origin of coordinates, 

the complex amplitude of the current density is )()( rdrj 9�i�� , and the solution of 
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Maxwell’s equations for the radiation field emitted by this dipole, embedded in a medium, 

can be represented as  

,
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in terms of the Green’s function )(rg .  With expression (5.6) for )(rg  the derivatives of 

the Green’s function can be worked out, and this yields 
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 With expressions (5.12) and (5.13) for the electric and magnetic field amplitudes, the 

Poynting vector )(rS  can be constructed.  Let us first consider the far field, for which 

1o ��rk .  Then only the O(1/r) terms in )(rE  and )(rB  survive, and we obtain 

�
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�
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32
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� ne

r
ck nrk drdrddrrS   . (5.14) 

In the far field, the Poynting vector is proportional to r̂ .  It can be shown from the 

discussion above that [80] 
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0Re
r
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n   , (5.15) 

and since every other term on the right-hand side of Eq. (5.14) is positive, it follows that 

the power flow is in the radially outward direction in the far field.  For a material with 

0)Re( �n  the electric and magnetic fields are spherical incoming waves, but the power 

flow is in the outward direction, as expected.

5.5   The Poynting Vector for a Dielectric and a NIM 

 The expression for the Poynting vector for arbitrary r�  and r�  is cumbersome, so 

here we shall only give the result relevant to the present topic.  These are the cases shown 

in Eqs. (5.7) and (5.8).  For r� , r�  and n positive we have a dielectric and for r� , r�

and n negative we have a NIM.  We set ud od� , with 1*��uu , for the dipole moment, 

and we introduce rkq o�  as the dimensionless distance between the dipole and the field 

point r.  The Poynting vector then becomes 
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where

             
o

2
o

4
o

o 12��
dckP �   , (5.17) 

equals the power emitted by the dipole in free space.   

 When u is real we have a linear dipole oscillating back and forth along the vector u,

as can be seen from Eq. (5.9).  Then 0*)ˆIm( �� uur , and )(rS  is in the radial outward 
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direction (since 0r �n�  for both cases).  The field lines of )(rS  are straight lines coming 

out of the dipole.  We now consider the more interesting case of a rotating dipole moment.  

When we take 

       )(
2

1
yx ieeu ���   , (5.18) 

then it can be verified from Eq. (5.9) that )(td  is a vector which rotates counterclockwise 

in the xy-plane, when viewed down the z-axis.  The Poynting vector becomes 
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with �  the polar angle with the z-axis, and �e  is the unit vector into the direction of 

increasing �  (angle around the z-axis in the counterclockwise direction).  Apart from the 

radial component, the Poynting vector now has a contribution proportional to �e , and this 

gives a rotation of the field lines around the z-axis.  For a dielectric we have 0r �� , and 

this rotation is in the counterclockwise direction, which is the same orientation as the 

rotation of the dipole moment.  For a negative index of refraction material we have 

0r �� , and the field lines swirl around the z-axis in the opposite direction as the rotation 

direction of the dipole moment.  Figures 3 and 4 show two field lines each for this 

rotating dipole moment.   
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5.6   Conclusions 

 The complex amplitudes of the electric and magnetic fields for the radiation emitted 

by an electric dipole embedded in a medium with arbitrary values of r�  and r�  are given 

by Eqs. (5.12) and (5.13).  The Poynting vector can then be obtained by substitution of 

these expressions into the right-hand side of Eq. (5.4).  For the case where both r�  and 

r�  are positive (dielectric) or where both are negative (NIM), the result is given by Eq. 

(5.16).  For a linear dipole the field lines of )(rS  are straight lines, coming out of the 

dipole.  When the embedding medium is a material with negative r�  and r� , the 

spherical waves are incoming, whereas the energy flow is outward.  This is very similar 

to the case of a plane wave, as shown in Fig. 5.2, where the direction of energy flow is 

opposite to the wave vector.  For a rotating dipole moment embedded in a material with 

negative r�  and r� , we found that the direction of rotation of the field lines around the z-

axis is opposite to the direction of rotation of the dipole moment, whereas for a dielectric 

both the field lines and the dipole moment have the same orientation in their rotation.   
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

6.1   Conclusions 

In its most general state of oscillation, an electric dipole moment of a source of 

radiation traces out an ellipse in a plane, taken to be the xy-plane.  The field lines of the 

Poynting vector of the emitted electromagnetic field represent the direction of energy 

flow, and we have obtained an analytical solution for these field lines.  It was found that 

for a given observation direction in the far field, the corresponding field line lies entirely 

on the cone specified by the polar angle.  Near the location of the dipole the field lines 

have a vortex structure, in which each field line swirls around the z-axis numerous times.  

In the far field, each field line approaches asymptotically a straight line, resembling an 

optical ray.  This line does not go through the origin of coordinates, where the dipole is 

located, and therefore it appears that the position of the dipole in the xy-plane is shifted.  

We have calculated this displacement in xy-plane.  To observe indirectly the existence of 

the vortex in the near field, we consider the intensity distribution in the far field, and we 

anticipate that the displacement of the field lines due to the vortex in the near field will 

yield a shift of the intensity profile in the far field.  This intensity shift has a macroscopic 

effect, when considering the difference profile, and this can be observed in the far field.  
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Both numerical simulations and experimental results of the macroscopic effect observed 

in the far field are presented.   

When a linearly oscillating dipole is located in the vicinity of a mirror, the pattern of 

energy emission (energy flow in the near field) is determined by interference between the 

electric field of the dipole and the magnetic field of the reflected radiation and the 

emission of radiation is drastically altered as compared to the emission by a dipole in free 

space.  Close to the dipole, the energy is emitted as a set of four optical vortices.  At a 

larger distance from the dipole, singularities and isolated vortices appear.  Also, in the 

plane of the mirror a singular circle appears.   

For a rotating dipole moment embedded in a material with negative index of 

refraction, we found that the direction of rotation of the field lines around the z-axis is 

opposite to the direction of rotation of the dipole moment, whereas for a dielectric both 

the field lines and the dipole moment have the same orientation in their rotation. 

6.2   Future Work 

In the future we intend to extend our research to biomedical applications.  We plan to 

disperse gold nano-particles inside a liposome, which contains a drug for therapy.  Then 

we can track the drug and manipulate its temperature through selective heating of the 

nano-particles by microwave irradiation.  As a first step we shall embed the nano-

particles in a tissue mimicking material as show in Fig. 6.1.  The system will be exposed 

to an external microwave field, and we shall consider various microwave generator  
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Figure 6.1   Gold nano-particle embedded in tissue and exposed to external microwaves.  

power outputs.  The incident microwaves will induce a current density in the nano-

particle, and this current density will heat up the particle through Ohmic loss.  Through 

phonon-phonon interactions at the interface between the particle and the tissue, the nano-

particle will transfer heat to the tissue.  The heat generated by the nano-particles can then 

be used to affect the surrounding material, for instance to destroy tumor cells.  

Theoretical calculations will be conducted to better understand the heating process of the 

nano-particles and the effects on the surrounding tissue. 

tissue 

microwaves 

skin

gold nano-particle 
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APPENDIX A 

CALCULATION OF THE POYNTING VECTOR FOR A DIPOLE LOCATED AT A  

DISTANCE H ABOVE A MIRROR 
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 The Poynting vector for electric dipole radiation near a mirror can be evaluated 

explicitly, as outlined in Chapter 4.  In terms of the parameters 

       1q̂� ��a   , (A1) 
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the Poynting vector takes the form 
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212112
im

1
im

2 )ˆ'()'ˆ'()ˆ'()'ˆ'( gbcbfacgacafbc q��qq��qZ ��������  . (A12) 

The first term on the right-hand side of Eq. (A11), proportional to 1q̂ , is the Poynting 

vector for a free dipole (no mirror) and the second term, proportional to 2q̂ , would be the 

Poynting vector of the mirror dipole, if it where a free dipole.  The third term in Eq. 

(A11) is the interference term, involving cross terms between the source field and the 

reflected field.

 The parameters given by Eqs. (A1)-(A6) can be worked out further by using the 

expressions Eqs. (4.1) and (4.2) for �  and im� , respectively.  In terms of the polar angles 

),( 1 ��  with respect to the position of the dipole (Fig. 4.2), we have

111 cossinˆ ��2 zeeq ��   , (A13) 

where

��2 sincos yx eee ��    (A14) 

is the radial unit vector in the xy-plane, and it can be seen from Fig. 4.2 that 
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with Hkh o� .  We then obtain 
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)cos2(1' 1
2
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)cos2(1
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q
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)2cos(' �c   . (A21) 

From Eq. (A1) it follows that we also have �cos�a , with �  the angle between �  and 

1q̂ .
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APPENDIX B 

NUMERICAL ASPECTS OF THE COMPUTATION OF FIELD LINES 
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 The Poynting vector )(rS  is a vector field in space.  A field line of this vector field is 

a curve, represented as )(ur , with u a dummy parameter.  For each value of u, )(ur  is a 

point on the curve, and at this point the vector )(rS  is on the tangent line of the curve.  

Therefore, the field lines )(ur  are a solution of 

))(()( u
du

ud rSr
�   . (B1) 

 

The field lines are only determined by the direction of )(rS , and not its magnitude, and 

therefore the vector fields )(rS  and )()( rSrf , with )(rf  any positive function, have the 

same field lines.  We then adopt dimensionless coordinates, such that �2  corresponds to 

one optical wavelength.  So we set rq ok�  for the dimensionless position vector of a 

point, and a field line is now represented as )(uq .  Overall positive constants can be 

absorbed in the function )(rf , like the factor 1
o )2( ��  in the definition of the Poynting 

vector (Eq. (2.10)).  The complex amplitudes of the electric and magnetic fields also have 

overall constants, as can be seen from Eqs. (2.6) and (2.7) for the fields of an electric 

dipole in free space.  We set 
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so that )(re  and )(rb  are dimensionless.  The parameter od  is defined in Eq. (2.16).  

The equation for the field lines in dimensionless coordinates then becomes 

       )*]()(Re[)( qbqeqq
�� a

du
d   , (B4) 
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with )(qa  an arbitrary positive function.  On the right-hand side of Eq. (B4) we consider 

e and b functions of q rather than r, in obvious notation.

 The solutions of Eq. (B4) are curves )(uq .  Only one field line goes through any 

point in space, since field lines can not cross, and therefore when we choose a point oq , a 

unique solutions )(uq  goes through this point.  We call this the initial point, and we set 

0�u  at this point.  So, given o)0( qq � , Eq. (B4) determines the field line through this 

point.  Field lines have an orientation; they run into the same direction as the Poynting 

vector on the tangent line.  It follows from Eq. (B1) that the direction of a field line is in 

the direction of increasing u.  Equation (B4) can be integrated from 0�u  to both positive 

and negative values of u, and then the direction of the field line is into the direction of the 

solution with positive u.

 In Sec. (2.4), the field lines of the Poynting vector for a free dipole were obtained 

analytically by solving Eq. (B4) in spherical coordinates.  The field lines of the Poynting 

vector for dipole radiation near a mirror (Ch. 4) have to be computed numerically by 

solving Eq. (B4).  It appears to be advantageous to use Cartesian coordinates, rather than 

spherical coordinates.  We use dimensionless coordinates ),,,( zyx , in terms of which a 

field point is represented as 

     zyx zyx eeeq ���   . (B5) 

The Cartesian components of Eq. (B4) are 

)*]()(Re[)( qbqeeq ��� xa
du

xd   , (B6) 
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    )*]()(Re[)( qbqeeq ��� ya
du

yd   , (B7) 

    )*]()(Re[)( qbqeeq ��� za
du

zd   , (B8) 

and this set has to be solved for the functions )(ux , )(uy  and )(uz , given the initial 

point ),,( ooo zyx .  In the Mathematica program below, the right-hand sides of these 

equations are computed from )(qe  and )(qb , and not by computing )*]()(Re[ qbqe �

first by hand, as in Appendix A.

 The function )(qa  is an arbitrary positive function of q, or x , y  and z .  We may 

simply set 1)( �qa , but better choices are possible.  The field of the dipole diverges 

when approaching the dipole, with )(qe  diverging as 3
1/1 q  and )(qb  as 2

1/1 q  (here, 1q

is the dimensionless distance to the dipole).  The corresponding Poynting vector diverges 

as 5
1/1 q  in general for an elliptical dipole.  For a linear dipole this becomes 2

1/1 q  due to 

a cancellation of terms.  This divergence may lead to numerical problems when 

integrating the set (B6)-(B8).  By making an appropriate choice for the function )(qa ,

this divergence may be eliminated from the right-hand side of the three equations.  We 

take the function )(qa  as 

n
n hzyxqa �

�
�

�
�
� ����� 222

1 )()(q   , (B9) 

and in the Sample Program below we have set 2�n .  The choice of the value of n

affects the numerical step size u
 , which is determined by Mathematica, and it is a 

matter of trial and error to find out which value of n is most optimum.   
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 The Sample Program below computes the upper-right field line in Fig. 4.4, and the 

Test Run Output shows the graph that Mathematica generates.  The graph has been 

rotated in order to give it more or less the same view as in Fig. 4.4.  After running the 

program, the graph data is exported and put in a SigmaPlot (or Excel) spreadsheet.  For 

graphs with multiple field lines, this procedure has to be repeated for each field line.  

Then a graph is made in SigmaPlot and fixed up (choose orientation, remove grid lines, 

change axes fonts, etc.), after which it is copied to Word.  In Word, the axes, axes labels, 

arrow heads and any other embellishments are put in, to arrive at the final publication-

quality graph.
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Sample Program: 



www.manaraa.com

143

Test Run Output: 
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APPENDIX C 

THE POYNTING VECTOR CLOSE TO A DIPOLE ABOVE A MIRROR 

 
 
 
 
 
 



www.manaraa.com

145

 Close to the dipole, the parameter 1q  is small, and the expressions from Appendix A 

can be simplified.  We shall assume that 11 ��q  and hq ��1 .  It follows from Eqs. (A15) 

and (A13) that the magnitude of vector 2q  is 

     2
11

2
12 4cos4 hhqqq ��� �   , (C1) 

and therefore 

     112 cos2 �qhq ��  + � )( 2
1q   . (C2) 

This function of 1q  appears in 1f , 1g , 2f  and 2g  of Eqs. (A7)-(A10), in the parameters 

b, 'b  and c of Eqs. (A18)-(A20), and in the interference term in Eq. (A11).  The unit 

vector in the 2q  direction, appearing on the right-hand side of Eq. (A12), becomes  

     1
1

2 sin
2

ˆ �2eeq
h

q
z ��  + � )( 2

1q   . (C3) 

A systematic expansion in orders of 1q  then yields for the Poynting vector in the near 

field 

: ;��q�qq� )'ˆ(3')13(cos)()(sinsinˆ)( 1
2

1
1

2
1 ���,

-

.
/
0

1
��� aahw

q
hv ��

              )sinˆsinsin(
2

)2sin(sin 11 �� q� ��
h

h

              + )cos3'(ˆsin)'3'([
2

)( 2
11 �2 ��� caac

h
hv qe

             )]'coscos3(sin)sinsinsin3( 111
im aa ���� ���� ��   + � )( 1q   . (C4) 

Here, )(hv  and '�  are defined in chapter 4, and in addition we introduce the function 

)2sin(
2

11
2
1)2cos(

2
1)( 22 h

hh
h

h
hw �

�

�
�
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�
���   . (C5) 
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